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THE KRONECKER–WEBER THEOREM

ANDREW SNOWDEN

1. The local Kronecker–Weber theorem

We are now ready to prove the local theorem:

Theorem 1.1. Any finite abelian extension of Qp is contained in Qp(ζn) for some n.

Let K/Qp be a finite abeian extension with Galois group G. By the structure theorem for
finite abelian groups, G ∼=

∏n
i=1Gi where each Gi is cyclic of prime power order. Let Ki be

the field correspond to the quotient G→ Gi. As K is the compositum of the Ki, it suffices
to prove the theorem for each Ki. Thus, relabeling, we may as well assume that G itself is
of prime power order, say G = Z/qrZ for some prime q.

Case 1: q 6= p. Since G is prime to p, the extension K/Qp is tamely ramified. We can
thus write K = L(π1/e), where L/K is unramified, π is a uniformizer of L, and e is the
ramification index of K/Qp; we know that L contains all eth roots of unity. We have a split
short exact sequence

0 // Gal(K/L) // G // Gal(L/Qp) // 0

µe Z/fZ

and so G ∼= (Z/fZ)nµe. As we explained last time, the generator (Frobenius) of Gal(L/Qp)
acts by x 7→ xp on µe. Since G is abelian, this action must be trivial; that is, we must have
x = xp for all eth roots of unity. It follows that e | p− 1.

Since L/K is unramified, p is a uniformizer of L, and so we can write π = up for a unit u
of L. We have

K = L((pu)1/e) ⊂ L((−u)1/e, (−p)1/e).
Since e is prime to p, the extension L((−u)1/e)/L is unramified, and thus unramified over
Qp, and so L((−u)1/e) ⊂ Qp(ζm) for some m prime to p. On the other hand, we have

Qp((−p)1/e) ⊂ Qp((−p)1/(p−1)) = Qp(ζp),

where the containment comes from the fact that e divides p−1, and the equality was proved
last time. We thus see that K ⊂ Qp(ζmp), which completes the proof.

Case 2: q = p 6= 2. We have G ∼= Z/prZ. Let L1/Qp be the unique unramified extension
of degree pr, let L2/Qp be the unique subextension of Qp(ζpr+1)/Qp with Galois group Z/prZ,
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and let L = L1L2 be their compositum. Since L1/Qp is unramified and L2/Qp is totally
ramified, the natural map

Gal(L/Qp)→ Gal(L1/Qp)×Gal(L2/Qp) ∼= (Z/prZ)2

is an isomorphism. We claim that K is contained in L, which will prove the theorem.
Suppose not. Consider the injective map

Gal(KL/Qp)→ Gal(L/Qp)×Gal(K/Qp) ∼= (Z/prZ)3.

The image is a subgroup of (Z/prZ)3 that surjects onto (Z/prZ)2, but is strictly larger than
this group. It follows that Gal(KL/Qp) has a quotient of the form (Z/pZ)3. This yields a
Galois extension of Qp with this group. Thus to complete the proof, it suffices to prove the
following:

Proposition 1.2. There is no Galois extension of Qp with group (Z/pZ)3 (assuming p 6= 2).

We do this in the following section.

Case 3: q = p = 2. This is similar to Case 2 but somewhat more complicated. We leave
it as an exercise.

2. Proof of Proposition 1.2

To prove the proposition, we need to establish some basic facts about the field Qp(ζp),
which we denote by F . We let π = 1 − ζp, which is a uniformizer of F , and we let G =
Gal(F/Qp). The cyclotomic character χ : G→ (Z/pZ)× is an isomorphism.

Lemma 2.1. For g ∈ G we have gπ = χ(g)π (mod π2).

Proof. We have gπ = 1− ζχ(g)p , and so

gπ

π
=

1− ζχ(g)p

1− ζp
= 1 + ζp + · · ·+ ζχ(g)−1

p .

Since each term on the right is a p-power root of unity, and thus congruent to 1 modulo π,
the entire right side is congruent to χ(g) modulo π. The result follows. �

Lemma 2.2. Let x be a principal unit of F . Then there exists an integer n such that ζnp x

is congruent to 1 modulo π2.

Proof. If x is congruent to 1 modulo π2, take n = 0. Otherwise, write x = 1 + mπ + O(π2)
for some integer m; note that this is possible since the residue field of F is Fp, and so every
element is represented by an integer. Since ζp = 1− π, we have ζnp = 1− nπ+O(π2). Thus,
taking n = −m, we have

ζ−mp x = (1−mπ +O(π2))(1 +mπ +O(π2)) = 1 +O(π2),

which completes the proof. �

Lemma 2.3. We have U1(F )p = Up+1(F ).

Proof. Let x ∈ U1(F ). By Lemma 2.2, write x = ζnp (1 + y) where v(y) ≥ 2. By the binomial
theorem, xp = 1 + pyz + yp, where z is a Z-linear combination of powers of y. Since F/Qp

is totally ramified of degree p − 1, we have v(p) = p − 1, and so v(py) ≥ p + 1. Of course,
v(yp) ≥ 2p ≥ p+ 1 as well. Thus xp ∈ Up+1(F ).
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Conversely, suppose that x ∈ Up+1(F ), and write x = 1 + y with v(y) ≥ p + 1. Consider

the series
∑

n≥0

(
1/p
n

)
yn. We have(

1/p

n

)
=

(1/p)(1/p− 1) · · · (1/p− n+ 1)

n!
.

The numerator has n copies of p−1 in it, while the denominator has approximately (and at
most) n/(p− 1) copies of p in it. Since p has valuation p− 1, we find

v

((
1/p

n

))
≥ −(p− 1)

(
n+

n

p− 1

)
= −pn.

Since v(yn) ≥ (p+ 1)n, the terms in the series have valuation tending to infinty, and so the
series converges. It converses to an element of U1(F ) that is a pth root of x. �

Lemma 2.4. Let x ∈ U1(F ) be such that gx/xχ(g) is a pth power for all g ∈ G. Then we
can write x = ζap (1 + π)bu where a, b ∈ Z and u ∈ U1(F )p.

Proof. Since gx/xχ(g) is a pth power and a principal unit, it is a pth power of a principal
unit, i.e., it belongs to U1(F )p, which is Up+1(F ) by Lemma 2.3. Thus gx is congruent to
xχ(g) modulo πp+1. Per Lemma 2.2, let a ∈ Z be such that ζ−ap x = 1 + O(π2), and write

ζ−ap = 1 + cπn +O(πn+1) for integers c and n with n ≥ 2. Then (using Lemma 2.1),

gx = ζaχ(g)p (1 + cχ(g)nπn +O(πn+1)), xχ(g) = ζaχ(g)p (1 + cχ(g)πn +O(πn+1)).

Since these are congruent modulo πp+1 for all g, either n ≥ p+ 1 or else n ≡ 1 (mod p− 1),
which implies n = p (since n ≥ 2); thus n ≥ p in all cases. We thus see that ζ−ap x is 1

modulo πp, and can thus be written at 1 + bπp +O(πp+1) for some integer b (in fact, b = c if
n = p, and b = 0 if n > p). Note that 1 + bπp is congruent to (1 + πp)b modulo πp+1. Thus,
working modulo πp+1, or, equivalently, U1(F )p, we have x = ζap (1 +π)n, which completes the
proof. �

Proof of Proposition 1.2. Suppose that E/Qp is Galois with group (Z/pZ)3. We apply Kum-
mer theory to the extension E(ζp)/F . This tells us that E(ζp) = F (B1/p) for some canonical
subgroup B ⊂ F×/(F×)p isomorphic to (Z/pZ)3. Since F (x1/p) is abelian over Qp for
all x ∈ B (being a subfield of E(ζp)), Proposition 3.5 of the previous note tells us that
xg/xχ(g) ∈ F p for all g ∈ G.

Let x ∈ F× be a lift of some element x of B, and write x = uπm where u is a unit of F .
The element gx/xχ(g) has valuation v(x)(1− χ(g)) modulo p; but it is also a pth power, and
thus its valuation is 0 mod p. We conclude that v(x) is a multiple of p, since we can choose
g so that χ(g) 6= 1 modulo p. Since we can modify x by pth powers, we may as well assume
that it has valuation 0, i.e., that it is a unit. In fact, since every element of the residue field
is a pth power, we can assume that it is a principal unit. But now, by Lemma 2.4, we see
that x can be written in the form ζap (1 + πp)b modulo pth powers.

The above analysis shows that B belongs to the subgroup of F×/(F×)p generated by ζp
and 1 + πp. Thus, as an Fp-vector space, dim(B) ≤ 2. This is a contradiction. �

3. The global Kronecker–Weber theorem

Finally, we can prove the global theorem:

Theorem 3.1. Any finite abelian extension of Q is contained in Q(ζn) for some n.
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Let K/Q be given finite abelian extension. Let p1, . . . , pr be the finitely many rational
primes at whichK ramifies, and for each i choose a prime pi ofK over pi. By local Kronecker–
Weber, each Kpi is contained in some Qpi(ζni

). Let pei be the largest power of p dividing ni,
and put m = pe11 · · · perr . We will show that K is contained in Q(ζm).

Let L = K(ζm) and let Ip ⊂ Gal(L/Q) be the inertia group at p. Let qi be a prime of L
over pi. Then Qpi(ζm) ⊂ Lqi ⊂ Qpi(ζlcm(m,ni)); since pni is the largest power of p dividing m
and ni, we see that Ipi

∼= (Z/peiZ)×. Let I ⊂ Gal(L/Q) be the subgroup generated by the
Ipi ’s. Then

|I| ≤
r∏
i=1

|Ipi | =
r∏
i=1

ϕ(peii ) = ϕ(m) = [Q(ζm) : Q].

The fixed field LI is everywhere unramified; thus, by Minkowski’s theorem, it is Q. Hence
I = Gal(L/Q), and so [L : Q] = |I| ≤ [Q(ζm) : Q]. Since Q(ζm) ⊂ L, we must have
L = Q(ζm), and so K ⊂ Q(ζm).
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