
MATH 776
BACKGROUND ON LOCAL FIELDS AND KUMMER THEORY

ANDREW SNOWDEN

Our goal at the moment is to prove the Kronecker–Weber theorem. Before getting to this,
we review some of the basic theory of local fields and Kummer theory, both of which will be
used constantly throughout this course.

1. Structure of local fields

Let K/Qp be a finite extension. We denote the ring of integers by OK . It is a DVR. There
is a unique maximal ideal m, which is principal; any generator is called a uniformizer. We
often write π for a uniformizer. The quotient OK/m is a finite field, called the residue field;
it is often denoted k and its cardinality is often denoted q.

Fix a uniformizer π. Every non-zero element x of K can be written uniquely in the form
uπn where u is a unit of OK and n ∈ Z; we call n the valuation of x, and often denote it
v(x). We thus have K =

⋃
n≥0 π

−nOK . This shows that K is a direct union of the fractional

ideals π−nOK , each of which is a free OK-module of rank one. The additive group OK is
isomorphic to Zd

p, where d = [K : Qp].

The decomposition x = uπn shows that K× ∼= Z × U , where U = O×K is the unit group.
This decomposition is non-canonical, as it depends on the choice of π. The exact sequence

0→ U → K×
v→ Z→ 0

is canonical. Choosing a uniformizer is equivalent to choosing a splitting of this exact
sequence.

Let k = OK/m be the residue field. Consider the reduction modulo m map U → k×. It
is surjective (proof: every element of k× admits a lift to O, and is necessarily a unit). Its
kernel consists of units congruent to 1 modulo m, and is often denote U1; these are called
principal units. We thus have an exact sequence

1→ U1 → U → k× → 1.

This sequence splits canonically. Indeed, suppose x ∈ k×. Then xq−1 = 1, where q = #k.
Since the polynomial T q−1−1 splits into distinct linear factors over k, Hensel’s lemma shows
that every root over k lifts to a unique root in OK . Thus there is a unique (q − 1) root of
unity ω(x) ∈ U mapps to x. One easily verifies that ω : k× → U is a group homomorphism
that splits the above sequence. It is called the Teichmüller character.

The group U1 contains the group µpr of all p-power roots of unity in K. The quotient
U1/µpr is isomorphic to Zd

p where d = [K : Q]. Indeed, one has versions of the exponential
and logarithm that give isomorphisms between 1 + mn and πmOK for appropriate n and m,
and this shows that 1 + mn is isomorphic, as a group under multiplication, to Zd

p. Since
U1/µpr is torsion-free, it too is isomorphic to this. In particular, U1 is a p-group, and thus
all elements have all prime-to-p roots canonically.
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Putting this all together, we have a (non-canonical) isomorphism

K× ∼= Z× Z/(q − 1)Z× Z/prZ× Zd
p

where q = #k, pr is the number of p-power roots of unity in K, and d = [K : Qp]. Note that
Z/(q − 1)Z× Z/prZ can be identified with the group of all roots of unity in K.

2. Extensions of local fields

Let K/Qp be a finite extension, and let L/K be a finite extension. Let π (resp. $) be
a uniformizer of K (resp. L), and let k (resp. `) be the residue field of K (resp. L). Then
`/k is an extension of finite fields; its degree is typically denoted f = f(L/K). We can
write π = u$e for some unit u of L. The number e = e(L/K) is independent of all choices,
and called the ramification index of the extension. We have the fundamental relation
[L : K] = ef . The extension is called unramified if e = 1, tamely ramified if p - f ,
wildly ramified if p | f , and totally ramified if f = 1. There is a canonical intermediate
field Lu of L/K such that Lu/K is unramified (of degree f) and L/Lu is totally ramified (of
degree e). The group Gal(L/Lu) ⊂ Gal(L/K) is called the inertia group, and denoted I.
There is also a canonical intermediate field Lu ⊂ Lt ⊂ L such that Lt/Lu is tamely ramified
(of degree the prime-to-p part of e) and L/Lt is wildly ramified (of degree the p-part of e).
The group I t = Gal(Lt/Lu) is called the tame inertia group, which is a subgroup of I,
while the group Iw = Gal(L/Lt) is called the wild inertia group, which is a quotient of I.

Unramified extensions correspond bijectively to extensions of the residue field. Precisely,
suppose that L/K is an unramified extension. Write ` = k(ζ) where ζ is a root of unity; this
is possible by the theory of finite fields. By Hensel’s lemma, ζ lifts to a unique root of unity
in L, which we still call ζ. Thus K(ζ) ⊂ L. Since both extensions are unramified and have
residue field `, they have the same degree over K, and thus they are equal. The extension
L/K is always Galois, and the natural map Gal(L/K) → Gal(`/k) is an isomorphism.
Thus Gal(L/K) is a cyclic group. There is a canonical generator lifting the Frobenius
automorphism in Gal(`/k), which we still call the Frobenius element.

Next, suppose that L/K is tamely and totally ramified. Write $e = uπ for some unit u
of L. Since `× = k×, we can find a unit v of K congruent to u modulo ($); replacing π with
v−1π, we can thus assume u ∈ U1. Since U1 is a pro-p-group, it is e-divisible, that is, u has
an eth root w in U1. Replacing $ with w$, we can thus assume u = 1. In other words, we
can choose our uniformizers so that $e = π. We thus see that L = K(π1/e), that is, any
totally and tamely ramified extension is obtained by adjoining a root of a uniformizer. This
extension is Galois if and only if K contains all eth roots of unity. Suppose this is the case.
We then have a homomorphism

Gal(L/K)→ µe, σ 7→ σ(π1/e)

π1/e
,

where µe ⊂ K× denotes the group of eth roots of unity. One verifies that this is an isomor-
phism and independent of any choices (this is a special case of Kummer theory, which we
cover below). Thus, again, Gal(L/K) is cyclic.
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Now suppose that L/K is an arbitrary tamely ramified Galois extension. We then get a
canonical exact sequence

1 // Gal(L/Lu) // Gal(L/K) // Gal(Lu/K) // 1

µe Gal(`/k)

One can show that this extension of groups is split (non-canonically), and so Gal(L/K) is
the semi-direct product of the outside groups. The action of Gal(`/k) on µe ⊂ `× is the
natural one.

Finally, suppose that L/K is a Galois extension that is totally and wildly ramified. Then
Gal(L/K) is a p-group. In contrast to the other cases, it does not have to be cyclic, or even
abelian. However, being a p-group, it is solvable. Combining all three cases, one sees that
Gal(L/K) is always solvable.

Consider the extension Qp(ζp) of Qp. It is a totally ramified extension of degree p − 1,
and thus tamely ramified, and therefore has the form π1/p for some uniformizer π of Qp. We
can write π = γp for some unit γ of Qp. Since the group of principal units is a p-group,
all principal units are (p − 1)st powers, and so the extension is unchanged if we modify γ
by a principal unit. We can thus assume that γ is a (p − 1)st root of unity. The following
proposition, which we require in our proof of local Kronecker–Weber, determines this root
of unity:

Proposition 2.1. We have γ = −1, that is, Qp(ζp) = Qp((−p)1/(p−1)).

Proof. Let Φp(t) be the pth cyclotomic polynomial. We have

Φp(t) = 1 + t+ · · ·+ tp−1 =

p−1∏
i=1

(t− ζ ip)

Evaluating at 1, we thus find

Φp(1) = p =

p−1∏
i=1

(1− ζ ip).

Now, we have

1− ζ ip
1− ζp

= 1 + ζp + · · ·+ ζ i−1p ,

which reduces to i in the residue field Fp; in particular, it is a unit. Thus, putting π = 1−ζp,
we see

πp−1 =

[
p−1∏
i=1

1− ζp
1− ζ ip

]
·

[
p−1∏
i=1

(1− ζ ip)

]
= up,

where u is a unit reducing to 1/(p − 1)! = −1 in Fp. We can thus write u = −v where v
is a principal unit. As the group of principal units is a p-group, v is a (p − 1)st power, say
v = wp−1. We thus see that (w−1π)p−1 = −p, and so w−1π = (−p)1/(p−1). This completes
the proof. (Note that both fields have degree p− 1 over Qp, so this containment shows that
they are equal.) �
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3. Kummer theory

We will now prove the basic results of Kummer theory, which we will need for the proof of
Kronecker–Weber, and in the remainder of the course. This will also allow us to see a small
bit of group cohomology, which will figure prominently later.

Let G be a group and let M be a G-module. A 1-cocycle of G with values in M is
a function f : G → M satisfying f(gh) = f(g) + gf(h). A 1-coboundary is a function
of the form f(g) = gx − x for some x ∈ M . One readily verifies that the collection of 1-
cocycles forms a group (under pointwise addition), and that the set of 1-coboundaries forms
a subgroup. The quotient group, denote H1(G,M), is the first group cohomology of G with
coefficients in M .

The subject of Galois cohomology studies group cohomology in the setting where G is
the Galois group of a field extension and M is somehow related to the fields involved. The
first result in this subject is the following:

Theorem 3.1 (Hilbert’s Theorem 90). Let L/K be a finite Galois extension with group G.
Then H1(G,L×) = 0.

Proof. Let f : G → L× be a 1-cocycle; we now use multiplicative notation, so that f(gh) =
gf(h) · f(g). The functions g : L→ L, for g ∈ G, are L-linear independent (exercise). Thus
linear combination

∑
g∈G f(g)·g(−) is non-zero. Let x ∈ L× be such that y =

∑
g∈G

gx·f(g) 6=
0. But then

hy =
∑
g∈G

hgxhf(g) =
∑
g∈G

hgxf(hg)f(h)−1 = f(h)−1y,

and so f(h) = y · hy−1, proving that f is a 1-coboundary. �

Theorem 3.2 (Kummer Theory, version 1). Let K be a field containing all nth roots of
unity, and suppose that p - n where p = char(K). Let L/K be a Galois extension with group
Z/nZ. Then L = K(a1/n) for some a ∈ K.

Proof. Let σ ∈ G be a generator, let µn ⊂ K be the group of nth roots of unity, and let
ζ ∈ µn be a generator. Let f : G→ µn ⊂ L× be the isomorphism given by f(σ) = ζ. Then f
is a 1-cocycle and so by Hilbert’s Theorem 90, there exists b ∈ L× such that f(σi) = (σib)/b
for all i. In particular, with i = 1 we see that σb = ζb, and so σ(bn) = bn. Thus a = bn is
fixed by G, and so belongs to K. No smaller power of b belongs to K since ζ is primitive.
Thus L = K(b) = K(a1/n). �

The theorem can also be phrased in the following manner using the absolute Galois group
GK = Gal(K/K).

Theorem 3.3 (Kummer Theory, version 2). With the same hypotheses as the previous
theorem, we have a canonical isomorphism

ϕ : K×/(K×)n → Hom(GK , µn), ϕ(a) = (g 7→ g(a1/n)/a1/n)

Note that µn ∼= Z/nZ once we choose a primitive nth root of unity.

Proof. We first verify that ϕ is a well-defined group homomorphism. Let a ∈ K×. Then
a1/n ∈ K, and so it makes sense to apply elements of GK to it. Since g(a1/n) is also an nth
root of a, we have g(a1/n)/a1/n ∈ µn. Since µn ⊂ K, the value of g(a1/n)/a1/n is independent
of the choice of nth root of a. Furthermore, it clearly only depends on a in K×/(K×)n. Thus
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ϕ(a) is well-defined, and one verifies that it is a homomorphism GK → µn. Finally, it is easy
to see that ϕ(ab) = ϕ(a)ϕ(b), and so ϕ is a homomorphism.

We now show that ϕ is injective. Suppose that a belongs to the kernel, that is, g(a1/n)/a1/n =
1 for all g ∈ GK . Then a1/n ∈ K, and so a ∈ (K×)n. Thus a = 1 in the quotient K×/(K×)n,
as required.

Finally we show that ϕ is surjective. Thus let f : GK → µn be given. Basic facts about
profinite gruops imply that f factors through Gal(L/K) for some finite Galois extension L/K;
write still f : Gal(L/K) → µn for this map. As this is a 1-cocycle, Hilbert’s Theorem 90
implies it is a 1-coboundary, and so there is b ∈ L such that f(σ) = σb/b for all σ ∈
Gal(L/K). Since f(σ) ∈ µn, we thus have σ(bn) = bn for all σ, and so a = bn belongs to K.
Thus f(σ) = σ(a1/n)/a1/n, as required. �

Remark 3.4. The homomorphism ϕ can be converted into a pairing

〈, 〉 : GK ×K×/(K×)n → µn, 〈g, a〉 = g(a1/n)/a1/n

Kummer theory asserts that this is a perfect pairing after replacing GK with Gab
K ⊗Z/nZ. �

If K does not contain the nth roots of unity, classifying Z/nZ-extensions of K is difficult;
in fact, this problem (for K a number field) is the subject of this course. There is one thing
we can say using Kummer theory, however.

Proposition 3.5. Let n be an odd prime power. Let K be a field of characteristic prime to
n, let L = K(ζn), and let M = L(a1/n) for some a ∈ L×. Consider the map

ϕ : Gal(L/K)→ L×/(L×)n, ϕ(g) = ga/aχ(g),

where χ is the cyclcotomic character. Then the following conditions are equivalent:

(a) M/K is an abelian extension.
(b) ϕ(g) = 1 for all g.

Proof. If (b) holds then all g ∈ Gal(L/K) we see that L((ga)1/n)) = L(aχ(g)/n) = L(a1/n),
and so M/K is Galois. Of course, if (a) holds then M/K is Galois too. It thus suffices to
assume M/K is Galois and prove that it is abelian if and only if ϕ = 1.

Let A ⊂ L×/(L×)n be the subgroup generate by a. By Kummer theory, the Kummer
pairing

〈, 〉 : Gal(M/L)× A→ µn, 〈g, b〉 = g(b1/n)/b1/n

is a perfect bilinear pairing. It is also equivariant for Gal(L/K), in the following sense: if
g ∈ Gal(L/K) and h ∈ Gal(M/L) then

g〈h, b〉 = 〈gh, gb〉,

where gh = ghg−1; indeed, lifting g to Gal(M/K), we have

g〈h, b〉 = g

(
h(b1/n)

b1/n

)
=

ghg−1g(b1/n)
g(b1/n)

= 〈gh, gb〉.

On the other hand, the value of the Kummer pairing is a root of unity, and so Gal(M/K)
acts on it through the cyclotomic character. Thus, with g and h as above, we have

〈gh, gb〉 = g〈h, b〉 = 〈h, b〉χ(g) = 〈h, bχ(g)〉.
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Since the Kummer pairing is perfect, we see that gh = h holds for all h if and only if gb = bχ(g)

holds (in A) for all b ∈ A. We thus see that Gal(L/K) acts trivially on Gal(M/L) if and
only if ϕ = 1.

Now observe that Gal(L/K) acts trivially on Gal(M/L) if and only if Gal(M/K) is abelian.
Indeed, if Gal(M/K) is abelian, this is obvious. For the reverse direction, observe that
Gal(L/K) ⊂ (Z/nZ)× and Gal(M/L) ⊂ µn are cyclic groups (this is where it is important
that n is an odd prime power). Let h ∈ Gal(M/L) be a generator, and let g ∈ Gal(M/K)
be a lift of a generator. Since the action is trivial, g and h commute. But these elements
generate Gal(M/K), and so it’s abelian. �

Exercise 3.6. Since Qp contains all (p − 1)st roots of unity, Kummer theory gives an
isomorphism

Gab
Qp
⊗ Z/(p− 1)Z ∼= Hom(Q×p /(Q

×
p )p−1, µp−1).

We have a canonical short exact sequence

0→ µp−1 → Q×p /(Q
×
p )p−1

v→ Z/(p− 1)Z→ 0.

Applying Hom(−, µp−1), we thus obtain a canonical exact sequence

0→ µp−1 → Gab
Qp
⊗ Z/(p− 1)Z→ Z/(p− 1)Z→ 0.

Show that µp−1 is the tame inertia group I t, and that the natural map I t → µp−1 discussed
in the previous section is the identity. Show also that the natural generator of the above
Z/(p− 1)Z is the Frobenius element.
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