18.01 Spring 2012

Class meetings: Tuesdays and Thursdays 11:00am-12:00pm, Fridays 2:00pm-3:00pm, in room 2-142.
Recitation meetings: Mondays and Wednesdays 2:00pm-3:00pm, in room 2-142.

Lecturer

Andrew Snowden
Office: 2-175
E-mail: asnowden@math.mit.edu
Office hours: Monday 4:00pm-5:00pm
Friday 1:00pm-2:00pm

Recitation Instructor

Tiankai Liu
Office: 2-491
E-mail: tiankai@math.mit.edu
Office hours: Friday 3:00pm-5:00pm

Text: Simmons, Calculus with Analytic Geometry, 2nd edition, McGraw-Hill.
Supplementary notes: Available free electronically, or in paper form from CopyTech for $\$ 12$.
Tutoring: The Math Learning Center (room 2-102) offers tutoring Monday through Thursday 3:00pm$5: 00 \mathrm{pm}$ and $7: 30 \mathrm{pm}-9: 30 \mathrm{pm}$, starting the second week of classes.

Homework: Problem sets will be posted to Stellar on Tuesday and due the following Tuesday. Problem sets must be turned in to the 18.01 mailbox in room $2-108$ no later than $3: 00 \mathrm{pm}$ on the day they are due. Late homework will not be accepted. However, your lowest homework score will be dropped, so one missing homework will not affect your grade.

Quizzes: There will be a short (10-15 minute) quiz each Friday at the beginning of class. Missed quizzes cannot be made up. However, your lowest quiz score will be dropped, so missing one quiz will not affect your grade. If you are going to miss a quiz for a valid reason, please let me know ahead of time.

Exams: There will be four hour-long exams throughout the semester (approximately one every eight lectures) and an additional final exam at the end of the semester. If you must miss an exam for a valid reason, schedule a make-up ahead of time, preferably a week in advance.

Grades: The final grades will be computed by weighting your work as follows.
Problem sets 25%
Quizzes 5\%
Hour-long exams $\quad 40 \%$ total (10% each)
Final 30%

Schedule

The right column below indicates the relevant sections of the text book (e.g., 2.1) and/or supplementary notes (e.g., G1). I encourage you to read these sections before lecture.

1. Differentiation

| Lecture 1 | Feb 7 | Derivatives, slope, velocity, rate of change | $2.1-2.4$, G1-4 |
| :--- | :--- | :--- | :--- | :--- |
| Lecture 2 | Feb 9 | Limits, continuity, trigonometric limits | $2.5,2.6$ to p. $75, \mathrm{C}$ |
| Lecture 3 | Feb 10 | Derivs of products, quotients, sine, cosine | $3.1,3.2,3.4$ |
| Lecture 4 | Feb 14 | Chain rule, higher derivatives | $3.3,3.6$ |
| Lecture 5 | Feb 16 | Implicit differentiation, inverse functions | $3.5,9.5$, G5 |
| Lecture 6 | Feb 17 | Exp and log, logarithmic differentiation | X, 8.2, 8.3 to 267, 8.4 to 271 |
| | Feb 21 | No lecture, Monday schedule due to President's Day | |
| Lecture 7 | Feb 23 | Hyperbolic functions, review for Exam 1 | 9.7 to 326 |
| Lecture 8 | Feb 24 | Exam 1 | |

2. Applications of differentiation

Lecture $9 \quad$ Feb 28 Linear and quadratic approximation A
Lecture 10 Mar 1 Curve sketching 4.1, 4.2
Lecture 11 Mar 2 Max-min problems 4.3, 4.4
Lecture 12 Mar 6 Related rates 4.5
Lecture 13 Mar 8 Newton's method and other applications 4.6, 4.7
Lecture 14 Mar 9 Mean value theorem, inequalities
2.6 to 77, MVT

Lecture 15 Mar 13 Differentials, antiderivatives
5.2, 5.3

Lecture 16 Mar 15 Differential equations, separation of variables $\quad 5.4,8.5$
Lecture 17 Mar 16 Exam 2

3. Integration with applications

Lecture 18 Mar 20 Definite integrals
Lecture 19 Mar 22 First fundamental theorem of calculus 6.6, 6.7 to p. 215
Lecture 20 Mar 23 Second fund. thm. of calculus, defn. of log Spring Break Mar 26-30
Lecture 21 Apr 3 Areas between curves, volume by slicing
Lecture 22 Apr 5 Volume by disks and shells
Lecture 23 Apr 6 Work, average value, probability
Lecture 24 Apr 10 Numerical integration
6.3 to (4), $6.4,6.5$

PI, FT
7.1-7.3
7.4
7.7 to 247, AV
10.9

Lecture 25 Apr 12 Further applications, review for Exam 3
Lecture 26 Apr 13 Exam 3

4. Techniques of integration

Apr 17 No class, Patriot's Day
Lecture 27 Apr 19 Trigonometric integrals 10.2-10.3
Lecture 28 Apr 20 Inverse substitution, completing the square 10.4
Lecture 29 Apr 24 Partial fractions
10.6, F

Lecture 30 Apr 26 Integration by parts, reduction formulas
Lecture 31 Apr 27 Parametric equations, arc length, surface area
Lecture 32 May 1 Polar coordinates, area in polar coordinates
10.7
17.1, 7.5, 7.6
$16.1,16.2,16.3$ to p. $570,16.5$
Lecture 33 May 3 Review for Exam 4
Lecture 34 May 4 Exam 4

5. Improper integrals and infinite series

Lecture 35 May 8 Indeterminate forms, L'Hôpital's Rule
12.2, 12.3

Lecture 36 May 10 Improper integrals
12.4, INT

Lecture 37 May 11 Infinite series, convergence tests
13.3, 13.5

Lecture 38 May 15 Taylor series
14.4 to 498

Lecture 39 May 17 Review for Final Exam; last class
The final exam will be held in the week of May 21-25.

