Solutions to Problem Set 1

18.904 Spring 2011

Problem 1

Statement. Let $n \geq 1$ be an integer. Let $\mathbf{C P}{ }^{n}$ denote the set of all lines in \mathbf{C}^{n+1} passing through the origin. There is a natural map $\pi: \mathbf{C}^{n+1} \backslash\{0\} \rightarrow \mathbf{C} \mathbf{P}^{n}$ taking a point to the line it spans. We give $\mathbf{C P}^{n}$ the quotient topology, so that a set U in $\mathbf{C P}^{n}$ is open if and only if $\pi^{-1}(U)$ is open in \mathbf{C}^{n+1}. Let $U_{i} \subset \mathbf{C P}{ }^{n}$ denote the set of points of the form $\pi\left(x_{0}, \ldots, x_{n}\right)$ where $x_{i} \neq 0$.
(a) Show that the U_{i} form an open cover of $\mathbf{C P}^{n}$.
(b) Show that an intersection of $k+1$ distinct elements of $\left\{U_{0}, \ldots, U_{n}\right\}$ is homeomorphic to $\left(\mathbf{C}^{\times}\right)^{k} \times \mathbf{C}^{n-k}$, for $0 \leq k \leq n$. (In particular, each U_{i} is homeomorphic to \mathbf{C}^{n}.)
(c) Prove the following lemma. Let X be a topological space and let \mathscr{U} be a finite open cover of X. Suppose that each element of \mathscr{U} is simply connected and any intersection of elements of \mathscr{U} is non-empty and path-connected. Then X is simply connected. [Hint: use van Kampen's theorem.]
(d) Conclude that $\mathbf{C P}^{n}$ is simply connected.

Solution. (a) The set $\pi^{-1}\left(U_{i}\right)$ consists of those points $\left(x_{0}, \ldots, x_{n}\right)$ of \mathbf{C}^{n+1} with $x_{i} \neq 0$. This is open, and so U_{i} is open in $\mathbf{C P}{ }^{n+1}$. Every point of $\mathbf{C P}{ }^{n}$ is of the form $\pi\left(x_{0}, \ldots, x_{n}\right)$ where at least one of x_{0}, \ldots, x_{n} is not zero. If x_{i} is non-zero, then the point belongs to U_{i}. This shows that the U_{i} cover.
(b) The situation is symmetrical, so to ease notation we only consider the intersection $U=$ $U_{0} \cap \cdots \cap U_{k}$. Let V be the subspace of \mathbf{C}^{n+1} consisting of elements of the form $\left(1, x_{1}, \ldots, x_{n}\right)$ where $x_{i} \neq 0$ for $1 \leq i \leq k$. We give V the subspace topology, with which it is clearly homeomorphic to $\left(\mathbf{C}^{\times}\right)^{k} \times \mathbf{C}^{n-k}$. It is clear that π maps V into U. We now define a map in the opposite direction:

$$
i: U \rightarrow V, \quad i\left(\pi\left(x_{0}, \ldots, x_{n}\right)\right)=\left(1, \frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)
$$

It is easy to see that i is well-defined: first, if $\pi(x)$ belongs to U then $x_{0} \neq 0$ and so we can divide by x_{0}, and second, if $\pi(x)=\pi(y)$ then $x=\lambda y$ for some $\lambda \in \mathbf{C}^{\times}$, and so $\frac{x_{i}}{x_{0}}=\frac{y_{i}}{y_{0}}$ for all i. It is also easy to see that π and i are mutual inverses. Indeed, if $x \in V$ then $x_{0}=1$ and so $i(\pi(x))=x$. Similarly, if $x \in U$ then we can write $x=\pi(y)$ for some $y \in \mathbf{C}^{n+1} \backslash\{0\}$. We then have $i(x)=y_{0}^{-1} y$, and so $\pi(i(x))=\pi\left(y_{0}^{-1} y\right)=\pi(y)=\pi(x)$, since $y_{0}^{-1} y$ and y span the same line. It remains to show continuity of each map. The map $\pi: V \rightarrow U$ is continuous since it is just the restriction of the $\operatorname{map} \mathbf{C}^{n+1} \backslash\{0\} \rightarrow \mathbf{C} \mathbf{P}^{n}$, which is continuous by definition.

We now show that i is continuous. Let W be an open set of V. We must show that $i^{-1}(W)$ is an open subset of U. By the definition of the topology on U, this set is open if and only if $\pi^{-1}\left(i^{-1}(W)\right)$ is an open subset of \mathbf{C}^{n+1}. Now, $\pi^{-1}\left(i^{-1}(W)\right)$ is easily seen to be $\mathbf{C}^{\times} W$, i.e., it consists of all non-zero multiples of elements of W. Let x be an element of W. We can then find an open neighborhood W_{1} of 1 in \mathbf{C}^{\times}, such that $W_{1}=W_{1}^{-1}$, and an open neighborhood W_{2} of x in W such that $W_{1} W_{2} \subset W$. It follows then that $\mathbf{C}^{\times} W$ contains $W_{1} \times W_{2}$ (where here we regard W_{2} as a subset of $\left.\left(\mathbf{C}^{\times}\right)^{k} \times \mathbf{C}^{n-k}\right)$. This is an open set of $\mathbf{C}^{n+1} \backslash\{0\}$, which shows that x belongs to the interior of $\mathbf{C}^{\times} W$. Now, if x is an arbitrary element of $\mathbf{C}^{\times} W$, then we can find $\lambda \in \mathbf{C}^{\times}$such that $\lambda x \in W$. If W^{\prime} is an open neighborhood of λx in $\mathbf{C}^{n+1} \backslash\{0\}$ contained in $\mathbf{C}^{\times} V$, then $\lambda^{-1} W^{\prime}$ is such a neighborhood of x. It follows that all points of $\mathbf{C}^{\times} W$ belong to its interior, i.e., it is open.
(c) [When writing this problem, I forgot that we were doing a general version of van Kampen's theorem allowing for covers with more than two open sets. The following inductive proof establishes (c) using van Kampen's theorem for only two element covers. Part (c) is fairly trivial to derive from the general van Kampen theorem.]

We proceed by induction on the cardinality of \mathscr{U}. It is clear if $\# \mathscr{U}=1$. Now let $\mathscr{U}=$ $\left\{U_{1}, \ldots, U_{n}\right\}$ be given. Put $Y=U_{2} \cup U_{3} \cup \cdots \cup U_{n}$. By the inductive hypothesis applied to Y and the cover $\left\{U_{2}, \ldots, U_{n}\right\}$, we conclude that Y is simply connected. Now, $U_{1} \cap Y=\left(U_{1} \cap U_{2}\right) \cup \cdots \cup\left(U_{1} \cap U_{n}\right)$. We claim that this set is path connected. Thus let x and y be points in it. Then x belongs to $U_{1} \cap U_{i}$ and y belongs to $U_{1} \cap U_{j}$, for some i and j. The sets $U_{1} \cap U_{i}$ and $U_{1} \cap U_{j}$ are non-empty, path-connected, contained in Y and each contain the non-empty $U_{1} \cap U_{i} \cap U_{j}$. It follows that we can find a path in $U_{1} \cap U_{i}$ from x to some point in $U_{1} \cap U_{i} \cap U_{j}$, and then a path in $U_{1} \cap U_{j}$ from this point to y. The composite path provides a path from x to y contained entirely in $U_{1} \cap Y$. This proves that $U_{1} \cap Y$ is path connected. Now, U_{1} and Y are simply connected and their intersection is path-connected; van Kampen's theorem now shows that $X=U_{1} \cup Y$ is simply connected. This completes the proof.
(d) The open cover $\left\{U_{0}, \ldots, U_{n}\right\}$ of $\mathbf{C P}^{n}$ satisfies the hypotheses of the lemma from (c), and so $\mathbf{C P}{ }^{n}$ is simply connected.

Problem 2

Statement. Let X be a topological space and let x_{1} and x_{2} be two points in X. Given a path h between x_{1} and x_{2}, we have seen that there is a canonical isomorphism

$$
i_{h}: \pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(X, x_{2}\right) .
$$

Write $C(G)$ for the set of conjugacy classes in a group G, and let

$$
\bar{i}_{h}: C\left(\pi_{1}\left(X, x_{1}\right)\right) \rightarrow C\left(\pi_{1}\left(X, x_{2}\right)\right)
$$

denote the map induced by i_{h}.
(a) Give an example (i.e., specify X, x_{1}, x_{2}, h and h^{\prime}) where $i_{h} \neq i_{h^{\prime}}$, with proof.
(b) Show that $\bar{i}_{h}=\bar{i}_{h^{\prime}}$ for any two paths h and h^{\prime}.
(c) Assume $\pi_{1}\left(X, x_{1}\right)$ is abelian. Show that $i_{h}=i_{h^{\prime}}$ for any h and h^{\prime}.

Solution. (a) Take X to be $S^{1} \vee S^{1}$, take $x_{1}=x_{2}$ to be the point where the two circles meet, take h to be the trival path from x_{1} to itself and take h^{\prime} to be the path going around one of the circles. Then i_{h} is the identity map from $\pi_{1}\left(X, x_{1}\right)$ to itself, while $i_{h^{\prime}}$ is given by conjugation by [h^{\prime}], regarded as an element of $\pi_{1}\left(X, x_{1}\right)$. Since the center of $\pi_{1}\left(X, x_{1}\right)$ is trivial (we know this fundamental group is the free group on two letters) and [h^{\prime}] is non-trivial (it is one of the generators), conjugation by $\left[h^{\prime}\right]$ is not the identity map on $\pi_{1}\left(X, x_{1}\right)$. Thus $i_{h} \neq i_{h^{\prime}}$.
(b) If g is an element of $\pi_{1}\left(X, x_{1}\right)$ then $i_{h}(g)$ is by definition $h^{-1} g h$, where h^{-1} is the reverse path from x_{2} to x_{1}, and juxtaposition denotes concatenation of paths. We thus have

$$
i_{h^{\prime}}(g)=\left(h^{\prime}\right)^{-1} g h^{\prime}=\left(h^{\prime}\right)^{-1} h i_{h}(g) h^{-1} h^{\prime}=a i_{h}(g) a^{-1}
$$

where $a=\left(h^{\prime}\right)^{-1} h$ is an element of $\pi_{1}\left(X, x_{2}\right)$. This shows that $i_{h^{\prime}}(g)$ and $i_{h}(g)$ are conjugate in $\pi_{1}\left(X, x_{2}\right)$. Thus $\bar{i}_{h^{\prime}}=\bar{i}_{h}$.
(c) In an abelian group, two elements are conjugate if and only if they are equal. Thus $\bar{i}_{h}=\bar{i}_{h^{\prime}}$ implies $i_{h}=i_{h^{\prime}}$.

Problem 3

Statement. Let X be a metric (and thus topological) space. Fix a basepoint x_{0} in X; the word "loop" will mean "loop based at x_{0} " in this problem. Let ΩX denote the set of all loops in X, i.e., the set of all continuous functions $p:[0,1] \rightarrow X$ with $p(0)=p(1)=x_{0}$. Define a distance function on ΩX by $d\left(p_{1}, p_{2}\right)=\max _{x \in[0,1]} d\left(p_{1}(x), p_{2}(x)\right)$.
(a) Show that concatentation of loops defines a continuous map $\Omega X \times \Omega X \rightarrow \Omega X$. Conclude that there is a natural map of sets $\pi_{0}(\Omega X) \times \pi_{0}(\Omega X) \rightarrow \pi_{0}(\Omega X)$. [Here π_{0} denotes the set of path components.]
(b) Show that two loops in X are homotopic if and only if the corresponding points of ΩX are in the same path component.
(c) Construct a canonical bijection of sets $\pi_{0}(\Omega X) \rightarrow \pi_{1}\left(X, x_{0}\right)$. Show that this map is a homorphism, in the sense that it respects the multiplications on the two sets (the one on $\pi_{0}(\Omega X)$ constructed in (a) and the usual group operation on $\left.\pi_{1}\left(X, x_{0}\right)\right)$.

Solution. (a) Let $\left(p_{1}, p_{2}\right)$ be an element of $\Omega X \times \Omega X$ and let $\epsilon>0$ be given. If $\left(p_{1}^{\prime}, p_{2}^{\prime}\right)$ is another point of $\Omega X \times \Omega X$ such that $d\left(p_{1}, p_{1}^{\prime}\right)<\epsilon$ and $d\left(p_{2}, p_{2}^{\prime}\right)<\epsilon$, then $d\left(p_{1} p_{2}, p_{1}^{\prime} p_{2}^{\prime}\right)<\epsilon$ as well; this is immediate from the definitions. By elementary properties of metric spaces, this implies that concatenation of loops is continuous. We now have maps

$$
\pi_{0}(\Omega X) \times \pi_{0}(\Omega X) \rightarrow \pi_{0}(\Omega X \times \Omega X) \rightarrow \pi_{0}(\Omega X)
$$

where the first comes from basic point-set topology, and the second is the one induced from the concatenation map.
(b) Let p_{0} and p_{1} be two loops in X. Suppose first that they are homotopic. Let p_{t} be a homotopy between them. Then $t \mapsto p_{t}$ provides a path between p_{0} and p_{1} in ΩX, provided it is continuous. We now show that it is continuous. Let $t \in[0,1]$ and $\epsilon>0$ be given. Since $(t, x) \mapsto p_{t}(x)$ is continuous, for each $x \in[0,1]$ we can find an open rectangle U_{x} in $[0,1]^{2}$ containing (t, x) with the property that $d\left(p_{t_{1}}\left(x_{1}\right), p_{t_{2}}\left(x_{2}\right)\right)<\epsilon$ for all $\left(t_{1}, x_{1}\right)$ and $\left(t_{2}, x_{2}\right)$ in U_{x}. By compactness of the interval, we can find x_{1}, \ldots, x_{n} such that $U_{x_{1}}, \ldots, U_{x_{n}}$ covers $t \times[0,1]$. The union of these open sets contains a rectangle of the form $V \times[0,1]$, where V is an open interval containing t. Thus for any $t^{\prime} \in V$ we have $d\left(p_{t}, p_{t^{\prime}}\right)<\epsilon$. This shows that $t \mapsto p_{t}$ is continuous.

Now suppose that p_{0} and p_{1} belong to the same path component of ΩX. Let $P:[0,1] \rightarrow \Omega X$ be a path connecting them, i.e., a continuous map with $P(0)=p_{0}$ and $P(1)=p_{1}$. Let $e:[0,1] \times \Omega_{X} \rightarrow X$ be the evaluation map $(x, p) \mapsto p(x)$. Define a map $[0,1]^{2} \rightarrow X$ by $(t, x) \mapsto e(x, P(t))$. This is a homotopy between p_{0} and p_{1}, provided it is continuous. To show that it is continuous, it suffices to show that e is continuous.

We now do this. Let $(x, p) \in[0,1] \times \Omega_{X}$ and $\epsilon>0$ be given. Let J be an open neighborhood of x such that $d\left(p\left(x_{1}\right), p\left(x_{2}\right)\right)<\epsilon$ for all $x_{1}, x_{2} \in J$. Let U be the open ball in ΩX centered at p and of radius ϵ. If $\left(x_{1}, p_{1}\right)$ belongs to $J \times \Omega X$ then

$$
d\left(p(x), p_{1}\left(x_{1}\right)\right) \leq d\left(p(x), p\left(x_{1}\right)\right)+d\left(p\left(x_{1}\right), p_{1}\left(x_{1}\right)\right) \leq 2 \epsilon
$$

This shows that e is continuous.
(c) Define a map $i: \pi_{0}(\Omega X) \rightarrow \pi_{1}\left(X, x_{0}\right)$ as follows. Let C be a path component of ΩX and let p be a point on C. Then $i(C)$ is the class of p in $\pi_{1}\left(X, x_{0}\right)$. This is well-defined by (b): if p^{\prime} is a different point on C, then there is a path between p and p^{\prime} in ΩX and thus a homotopy between p and p^{\prime} in X, and so p and p^{\prime} represent the same class in $\pi_{1}\left(X, x_{0}\right)$. It is also injective by (b). It is obviously surjective. Furthermore, it is obviously compatible with the two product operations, since they're both defined by concatenation.

Problem 4

Statement. In this problem, we will show that every finitely presented group occurs as a fundamental group.
(a) Let G be a group, let a be an element of G and let N be the normal closure of the subgroup generated by a. [Explicitly, N is the subgroup of G generated by all conjugates of a.] Let $\mathbf{Z} \rightarrow G$ be the map defined by $1 \mapsto a$. Show that the amalgamated free product $G * \mathbf{Z} 1$ is isomorphic to G / N. [Here 1 denotes the trivial group.]
(b) Let X be a topological space with base point x_{0} and let $i: S^{1} \rightarrow X$ be a loop based at x_{0}. Let X^{\prime} be the topological space obtained by attaching a 2-disc to X via i; that is, X^{\prime} is the quotient of $X \amalg D^{2}$ where an element $x \in S^{1}=\partial D^{2}$ is identified with $i(x) \in X$. Show that
$\pi_{1}\left(X^{\prime}, x_{0}\right)$ is the quotient of $\pi_{1}\left(X, x_{0}\right)$ by the normal subgroup generated by the class of i. [Hint: use van Kampen's theorem.]
(c) Show that every finitely presented group occurs as a fundamental groups. [Hint: let G be a finitely presented group. Pick a presentation. Start with a bouquet of circles, one for each generator. Attach a 2-disc for each relation and apply (b).]

Solution. (a) It's easiest to prove this using the universal property of amalgamated free products. Let H be an arbitrary group. Giving a $\operatorname{map} G *_{\mathbf{z}} 1 \rightarrow H$ is the same as giving a map $G \rightarrow H$ that kills a, and this is the same as giving a map $G / N \rightarrow H$. This shows that G / N satisfies the same universal property as $G *_{\mathbf{z}} 1$, and so the two are isomorphic.
(b) We first remark that it suffices to treat the case where X is path-connected. Indeed, let X_{1} be the path component to which x_{0} belongs and let X_{1}^{\prime} be constructed in an analogous manner to X^{\prime}. We have a diagram

The diagram obviously commutes. The vertical maps are easily seen to be isomorphisms, since π_{1} only depends on the path component that the basepoint lies in. We thus see that if the bottom map is surjective with kernel the normal closure of $[i]$, then the top map has the same property. Thus we may as well replace X by X_{1} and assume that X is path-connected.

Let 0 be a chosen point on D^{2} not on its boundary. Let $U=X^{\prime} \backslash\{0\}$ and let V be the open unit disc, regarded as a subset of X^{\prime}. Let x_{1} be a point in $U \cap V$ and let h be a path from x_{0} to x_{1} such that $h(t) \in U \cap V$ for $t \neq 0$. We have a commutative diagram

where the horizontal maps are the natural ones and the vertical ones are i_{h}. Furthermore, the natural map $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(U, x_{0}\right)$ is an isomorphism, since U deformation retracts onto X. It follows that $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X^{\prime}, x_{0}\right)$ is a surjection with kernel the normal closure of the subgroup generated by $[i]$ if and only if $\pi_{1}\left(U, x_{1}\right) \rightarrow \pi_{1}\left(X^{\prime}, x_{1}\right)$ is a surjection with kernel the normal closure of the subgroup generated by $j=i_{h}([i])$. (Sorry for the two i 's!)

Now, U and V are path-connected open sets that cover X^{\prime} and their intersection is path connected and contains x_{1}. In fact, their intersection is an annulus and j generates its fundamental group. By van Kampen's theorem, $\pi_{1}\left(X^{\prime}, x_{1}\right)=\pi_{1}\left(U, x_{1}\right) *_{\mathbf{Z}} 1$, where \mathbf{Z} is really $\pi_{1}\left(U \cap V, x_{1}\right)$ and 1 is really $\pi_{1}\left(V, x_{1}\right)$. Since the map $\mathbf{Z} \rightarrow \pi_{1}\left(U, x_{1}\right)$ sends 1 to j, we see from part (a) that $\pi_{1}\left(X^{\prime}, x_{1}\right)$ is the quotient of $\pi_{1}\left(U, x_{1}\right)$ by the normal subgroup generated by j. This completes the proof of (b).
(c) Let G be a finitely generated group. Let a_{1}, \ldots, a_{n} be generators for G and let b_{1}, \ldots, b_{m} be sufficient relations to present G. Let G_{0} be the free group on the a_{i} and let G_{i} be the quotient of G_{0} by the normal subgroup generated by b_{1}, \ldots, b_{i}. Note that G_{i} is the quotient of G_{i-1} by the normal subgroup generated by b_{i} and that $G_{m}=G$. We now prove inductively that there are spaces

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{m}
$$

such that $\pi_{1}\left(X_{i}\right)=G_{i}$, and the map $\pi_{1}\left(X_{i}\right) \rightarrow \pi_{1}\left(X_{i+1}\right)$ is the natural quotient map $G_{i} \rightarrow G_{i+1}$. To obtain X_{0}, simply take a bouquet of circles, one for each a_{i}. Assume now that we have constructed X_{i-1}. Via the map $G_{0} \rightarrow G_{i-1}$, we can regard b_{i} as an element of $\pi_{1}\left(X_{i-1}\right)$. By (b), we can now attach a 2-disc to X_{i-1} to obtain a space X_{i} with $\pi_{1}\left(X_{i}\right)=G_{i}$. This completes the proof.

Problem 5

Statement. Let G be a topological group; thus G is simulateneously a group and a topological space, and the multiplication map $G \times G \rightarrow G$ and inversion map $G \rightarrow G$ are continuous.
(a) Show that there is a unique group structure on $\pi_{0}(G)$ such that the natural map $G \rightarrow \pi_{0}(G)$ is a group homomorphism.
(b) Show that $\pi_{1}(G, 1)$ is a commutative group. [Hint: if c is a loop in G based at 1 and g is an element of G then $t \mapsto g c(t)$ is a loop in G based at g. Using this you can slide one loop along another to show that they commute in π_{1}.]

Solution. (a) The map $G \rightarrow \pi_{0}(G)$ is surjective, so there is at most one group structure on $\pi_{0}(G)$ which makes this map a homomorphism. Let G° be the path component of G containing the identity element. Then G° is a normal subgroup of G. Indeed, suppose that x and y belong to G°. Let p be a path from 1 to x and let q by a path from 1 to y. Then $t \mapsto x q(t)$ is a path from x to $x y$. Concatenating this with p, we obtain a path from 1 to $x y$. This shows that G° is closed under multiplication. It is clear that G° is closed under inversion; $t \mapsto p(t)^{-1}$ provides a path from 1 to x^{-1}. This shows that G° is a group. Finally, if y is any element of G then $t \mapsto y p(t) y^{-1}$ is a path from 1 to $y x y^{-1}$, and so G° is normal.

We now claim that two elements x and y of G belong to the same path component if and only if $x y^{-1} \in G^{\circ}$. First suppose that $x y^{-1} \in G^{\circ}$. Let p be a path from 1 to $x y^{-1}$. Then $t \mapsto p(t) y$ is a path from x to y, and so x and y lie in the same path component. Conversely, suppose that p is a path from x to y. Then $t \mapsto p(t) y^{-1}$ is a path from $x y^{-1}$ to 1 , and so $x y^{-1}$ belongs to G°. This establishes the claim.

It follows that the natural map $G \rightarrow \pi_{0}(G)$ factors as $G \rightarrow G / G^{\circ}$ followed by the bijection $G / G^{\circ} \rightarrow \pi_{0}(G)$. Since G° is normal, G / G° is a group, and the bijection of this with $\pi_{0}(G)$ gives a group structure on $\pi_{0}(G)$.
(b) Let f and g be two loops based at the identity. Let F_{t} be the concatenation of the following paths: first, the path $\left.f\right|_{[0, t]}$, from 1 to $f(t)$; then, the loop $s \mapsto f(t) g(s)$, based at $f(t)$; and finally, the map $\left.f\right|_{[t, 1]}$ from $f(t)$ to 1 . (In the second step, the juxtaposition denotes multiplication in the group.) One easily sees that $F:[0,1]^{2} \rightarrow G$ is continuous. (The function F is defined piecewise on three regions in $[0,1]^{2}$. It is clearly continuous on each region, and there is agreement at the boundaries. This implies it is continuous.) Now, $F(0)$ is the concatenation $g f$, while $F(1)$ is the concatenation $f g$. Thus $f g$ and $g f$ are homotopic, and so $\pi_{1}(X, 1)$ is commutative.

Problem 6

Statement. Let $G=\mathrm{SL}(2, \mathbf{R})$, the group of 2×2 real matrices with determinant 1 . We can naturally regard G as a closed subset of \mathbf{R}^{4}, and thus (after a few simple verifications) as a topological group. Let $B^{\circ} \subset G$ be the subgroup of matrices which are upper-triangular with positive entries on the diagonal. Let $K \subset G$ be the subgroup of rotations matrices. [An element of G belongs to K if and only if its two columns form an orthonormal basis of \mathbf{R}^{2}.]
(a) Show that B° is homeomorphic to \mathbf{R}^{2}, and is thus contractible.
(b) Show that K is homeomorphic to S^{1}.
(c) Show that the map $B^{\circ} \times K \rightarrow G$ sending (b, k) to $b k$ is a homeomorphism.
(d) Conclude that G is homotopy equivalent to S^{1}, and thus has fundamental group \mathbf{Z}.

Solution. (a) The group B° consists of matrices of the form

$$
\left(\begin{array}{cc}
a & b \\
& a^{-1}
\end{array}\right)
$$

with $a>0$. We thus have evident bijections between B° and $\mathbf{R}_{\geq 0} \times \mathbf{R}$ sending a point (a, b) in $\mathbf{R}_{\geq 0} \times \mathbf{R}$ to the above matrix, and the above matrix to (a, b) in $\mathbf{R}_{\geq 0} \times \mathbf{R}$. These maps are
each continuous since their components are. We thus find that B° is homeomorphic to $\mathbf{R}_{\geq 0} \times \mathbf{R}$. Since $\mathbf{R}_{\geq 0}$ is homeomorphic to \mathbf{R} (by the logarithm and exponential maps), we find that B° is homeomorphic to \mathbf{R}^{2}, and thus contractible.
(b) A rotation matrix necessarily has the form

$$
\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right)
$$

with $x^{2}+y^{2}=1$. We thus have evident bijections between K and S^{1} sending a point (x, y) on S^{1} to the above matrix, and the above matrix to the point (x, y) on S^{1}. These maps are each continuous since their components are continuous functions.
(c) Let \langle,$\rangle be the standard inner product on \mathbf{R}^{2}$; it is given by

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2} .
$$

Let $\|x\|^{2}=\langle x, x\rangle$ be the associated norm. Let e_{1}, e_{2} be the standard basis for \mathbf{R}^{2}. Let g be an element of G. Then $g e_{1}$ and $g e_{2}$ is also a basis for \mathbf{R}^{2}. The Graham-Schmit process allows us to take this basis and obtain an orthonormal basis. Precisely, put

$$
f_{1}=\frac{g e_{1}}{\left\|g e_{1}\right\|}=A(g) g e_{1}, \quad f_{2}=\frac{g e_{2}-\left\langle g e_{1}, g e_{2}\right\rangle\left\|g e_{1}\right\|^{-1} g e_{1}}{\left\|g e_{2}-\left\langle g e_{1}, g e_{2}\right\rangle\right\| g e_{1}\left\|^{-1} g e_{1}\right\|}=D(g) g e_{2}+B(g) g e_{1}
$$

(Here $A(g), B(g)$ and $D(g)$ are just real numbers; for instance, $A(g)=\left\|g e_{1}\right\|^{-1}$.) Then f_{1} and f_{2} form an orthonormal basis for \mathbf{R}^{2}. Let $\beta(g)$ be defined by

$$
\beta(g)^{-1}=\left(\begin{array}{cc}
A(g) & B(g) \\
& D(g)
\end{array}\right)
$$

Then $f_{i}=g \beta(g)^{-1} e_{i}$. Since $\kappa(g)=g \beta(g)^{-1}$ takes the orthonormal basis $\left(e_{1}, e_{2}\right)$ to the orthonormal basis $\left(f_{1}, f_{2}\right)$, it follows that $\kappa(g)$ belongs to K. Thus $\beta(g)$ has determinant 1 , and is clearly upper triangular, and so belongs to B°. Since the components of $\beta(g)^{-1}$ (i.e., A, B and D) are clearly continuous functions of G, we find that $\beta: G \rightarrow B^{\circ}$ is continuous. Since κ is defined from β and matrix multiplication, $\kappa: G \rightarrow K$ is continuous.

We have thus constructed a continuous function

$$
G \rightarrow K \times B^{\circ}, \quad g \mapsto(\kappa(g), \beta(g))
$$

which is a one-sided inverse to the (obviously) continuous function

$$
K \times B^{\circ} \rightarrow G, \quad(b, k) \mapsto b k
$$

i.e., the composite $G \rightarrow K \times B^{\circ} \rightarrow G$ is the identity. To finish the proof, it suffices to show that the map $K \times B^{\circ} \rightarrow G$ is injective, for then the two maps are forced to be mutual inverses. Thus assume that $b k=b^{\prime} k^{\prime}$. Then $\left(b^{\prime}\right)^{-1} b=k^{\prime} k^{-1}$, and so $k^{\prime} k^{-1}$ belongs to $K \cap B^{\circ}$. However, $K \cap B^{\circ}=1$ (easy calculation), and so $k=k^{\prime}$, from which it follows that $b=b^{\prime}$. This completes the proof.
[I just noticed that I did things backwards! The problem asked to show that $B^{\circ} \times K \rightarrow G$ is a homeomorphism and I showed that $K \times B^{\circ} \rightarrow G$ is a homeomorphism. There are two ways to fix this. First, one could change the above proof, using row operations instead of column operations. Or, one could observe that there is a commutative diagram

where the vertical maps are multiplication maps, $\phi(g)=g^{-1}$ and $\psi(k, b)=\left(b^{-1}, k^{-1}\right)$. Since ϕ, ψ and the left map are homeomorphisms, it follows that the right map is as well.]
(d) From (a)-(c), we find that G is homeomorphic to $\mathbf{R}^{2} \times S^{1}$, and thus homotopy equivalent to S^{1}. Thus $\pi_{1}(G)=\mathbf{Z}$.

