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1. quick summary

(1) Homotopy lifting property
(2) Lifting criterion
(3) Unique lifting property
(4) Existence of covering spaces

2. statement and proof

First, we have to define a notion of equivalence between the covering spaces. We
do it in the most obvious way. Let Y and Z be two covering spaces and f : Y → Z
be a map between the covering spaces, then if f is a homeomorphism we say that
f is an isomorphism, and Y and Z are called isomorphic when there exists an
isomorphism between them. It is really easy to see that this defines an equivalence
relation.

Also we note that the local conditions below mean that each point has arbitrarily
small neighborhoods satisfying that property, as opposed to having one single neigh-
borhood. The condition locally simply-connected can be replaced with a weaker
condition called semilocally simply-connected, but this practically changes nothing,
so we go with the more intuitive condition.

Theorem 1. Let X be path-connected, locally path-connected, and locally simply-
connected. Then there is a bijection between the set of base point preserving iso-
morphism classes of path-connected covering spaces p : (X̃, x̃0) → (X,x0) and the
set of subgroups of π1(X,x0), and the map is obtained by sending the covering space

p : (X̃, x̃0) → (X,x0) to the subgroup p∗(π1(X̃, x̃0)).

Remark 1. In this bijection the normal subgroups correspond to the Galois covers
by what’s shown in the previous talk.

Remark 2. Note that we are dealing with base-pointed maps here, there exists an
alternative version which avoids fixing a basepoint. This will be done in the next
talk.

Proof. The proof is actually almost done. We only need to show that two covering
spaces induce the same image in π1(X,x0) if and only if they are isomorphic.

The if part follows trivially by the functorial properties of the induced homo-
morphisms.

For the only if part, we will make use of the lifting properties. Let the covering
spaces be (Y, y0) and (Z, z0), with the maps p and q into (X,x0). By the lifting
criterion, there exists a lift p̃ of the map p to the covering space (Z, z0), and a
q̃ which is defined in the same way. By definition, these maps satisfy qp̃ = p and
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pq̃ = q, and therefore qp̃q̃ = pq̃ = q. Now by the unique extension property, the only
basepoint preserving lift of the map q to the covering space (Z, z0) is the identity
map, which implies that p̃q̃ is the identity mapping. Similarly, q̃p̃ is identity as
well. This finishes the proof, since p̃ is then an isomorphism between the covering
spaces (Y, y0) and (Z, z0). �

3. Exercises

(1) Show that there is no connected covering space of S1 with a non-trivial
finite fundamental group.

Proof. Choose an arbitrary basepoint x0 in S1. Assume that the connected
covering space p : (X̃, x̃0) → (S1, x0) has a non-trivial finite fundamental
group. Then, the subgroup p∗(π1(S1, x0)) is finite. Yet the only finite
subgroup of the group Z is the trivial group. (1)

Then by the Galois correspondance (X̃, x̃0) must be isomorphic to the
universal cover, in the sense of covering space maps, in particular, they
have to homeomorphic, and trivially homotopy equivalent, which means
that their fundamental groups are isomorphic. This gives a contradiction,
since π1(X̃, x̃0) was assumed to be non-trivial.

As an alternative, shorter proof we can use that p∗ is injective, and
everything follows immediately from (1).

�

(2) The space X satisfies the conditions of the theorem. Prove that if p :

(X̃, x̃0) → (X,x0) is the universal cover, and q : (Y, y0) → (X,x0) is a

connected covering space, then there exists a map r such that r : (X̃, x̃0) →
(Y, y0) is the universal cover of (Y, y0).

Proof. By the lifting criterion there exists a lift p̃ of p to (Y, y0). We can
use this p̃ as the map r in the statement.

Take a point y in Y . There exists a neighborhood U of q(y) such that
the inverse image of U under both p and q are disjoint unions of open sets
that are homeomorphically mapped to U . Take the one that contains y,
and look at its inverse image under p̃, which is a disjoint union of open sets
by using the fact that qp̃ = p. This finishes the proof. �


