Recall the **covering homotopy property**: Given a covering space $p: X \to X$, a homotopy $f_t: Y \to X$ and a map $\tilde{f}_0: Y \to \tilde{X}$ lifting f_0 , then there exists a unique homotopy $\tilde{f}_t: Y \to \tilde{X}$ of \tilde{f}_0 lifting f_t .

In particular, taking f_0 to be a constant map, and f_t to be a path — that is, a homotopy between to constant maps — we get that paths between points have unique lifts as long as those paths lie in the image of the covering space.

We use this to show the **lifting criterion** (*Hatcher*, Prop. 1.33): Suppose $p(\tilde{X}, \tilde{x}_0) \to (X, x_0)$ a covering space, $f: (Y, y_0), (X, x_0)$ a map with Y pathconnected and locally path-connected. Then a lift $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ of f exists iff $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\tilde{X}, \tilde{x}_0))$

One direction: Suppose there is a lift \tilde{f} of f. Then $f = p\tilde{f}$, so that $f_* = p_*\tilde{f}_*$ and hence the image of f_* is a subset of the image of p_* , as desired. Suppose $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\tilde{X}, \tilde{x}_0))$.

For each $y \in Y$, we take a path γ from y_0 to y.

Then $f\gamma$ has a unique lift $\tilde{f}\gamma$ starting at \tilde{x}_0 . Take $\tilde{f}(y)$ to be the second endpoint of this lifted path. We need to show that this is well defined, continuous. That, if it is, it is a lift follows immediately from the fact that $\tilde{f}\gamma$ is a lift of γ with second endpoint y

Let γ' be any other path from y_0 to y. Then $(f\gamma') \cdot (\overline{f\gamma})$ is a loop h_0 in X, being the concatonation of a path from x_0 to f(y) and a path from f(y) to x_0 .

In particular, $[h_0]$ is an element of $f_*(\pi_1(Y, y_0))$ since this is $f(\gamma' \cdot \overline{\gamma})$.

So $[h_0] \in p_*(\pi_1(\tilde{X}, \tilde{x}_0))$. h_0 is therefore homotopic with some loop h_1 which lifts under p to \tilde{h}_1 with homotopy h_t lifting to \tilde{h}_t . This then gives us a lift \tilde{h}_0 . By the uniqueness of lifted paths, we have $\tilde{h}_0|_{[0,5]} = \tilde{f\gamma'}, \tilde{h}_0|_{[.5,1]} = \tilde{f\gamma}$. So $\tilde{f\gamma}$ and $\tilde{f\gamma'}$ have the same end point, and hence provide consistent definitions of \tilde{f} .

We then need to show that \tilde{f} , as defined is continuous

Let $U \subset X$ an open neighborhood of f(y), with a lift $\tilde{U} \subset \tilde{X}$ containing $\tilde{f}(y)$, $p: \tilde{U} \to U$ a homeomorphism. Then there is a path-connected open neighborhood V of y with $f(V) \subset U$, since Y locally path-connected. We observe that \tilde{f} , by the above, is independent of choice of γ , so that for points $y' \in V$ we can define \tilde{f} interms of the concatonation of some fixed path γ and paths η from y to y' in V. Then there is a unique inverse $p^{-1}: U \to \tilde{U}$ onto the sheet of the covering space containing U, so this inverse lifts η to $\tilde{f}\eta = p^{-1}f\eta$. Then $(\tilde{f}\gamma) \cdot (\tilde{f}\eta)$ lifts $(f\gamma) \cdot (f\eta)$. $\tilde{f}(V) \subset \tilde{U}$, and $\tilde{f}|V = p-1(f)$. Since $p|\tilde{U}$ a homeomorphism, $p^{-1}f$ is therefore continuous, so that \tilde{f} is continuous, and hence at y. Since this applies for each y, we have \tilde{f} continuous, and hence

a lift of f, as desired.

We now show the **unique lifting property** (*Hatcher, Proposition 1.34*): Given a covering space $p: \tilde{X} \to X$ and a map $f: Y \to X$, then if Y connected and \tilde{f}_1, \tilde{f}_2 are lifts of f which agree at some point $y \in Y$, then \tilde{f}_1, \tilde{f}_2 agree on all of Y.

To see why, let $y \in Y$, and let U an open neighborhood such that $p^{-1}(U)$ is a disjoint union of \tilde{U}_{α} homeomorphic to U. by p. Let \tilde{U}_1 , \tilde{U}_2 be the $\tilde{U}'_{\alpha}s$ containing $\tilde{f}_1(y), \tilde{f}_2(y)$.

Then there is some neigborhood N of y mapped by f into U, so that \tilde{f}_i map N into \tilde{U}_i . In particular, if $\tilde{f}_1(y) = \tilde{f}_2(y)$, then $\tilde{U}_1 = \tilde{U}_2$. But then $p^{-1}f$ lifts f in N, so that \tilde{f}_1, \tilde{f}_2 agree on N. On the other hand, if $\tilde{f}_1(y) \neq \tilde{f}_2(y)$ then $\tilde{U}_1 \cap \tilde{U}_2 = \emptyset$, so that $\tilde{f}_1(N) \cap \tilde{f}_2(N) \subset \emptyset$. We therefore have that the set of points where \tilde{f}_1, \tilde{f}_2 agree is open and closed. But if Y connected the only subsets of Y that are both open and closed are Y and \emptyset , so that \tilde{f}_1, \tilde{f}_2 agree everywhere or nowhere, as desired.