18.904

2/25/11: LIFTING PROPERTIES I

NOAH ARBESFELD

In order to deduce the Galois correspondence on Monday, we will need to prove some technical results about covering spaces. These are the so-called lifting properties, and we will prove them today. For this talk, let $p: \tilde{X} \to X$ be a covering space.

Definition 0.1. Let $f: Y \to X$ be a map. Then, a map $\tilde{f}: Y \to X$ is said to be a **lift** of f if $p \circ \tilde{f} = f$. In particular, if $F: Y \times I \to X$ be a homotopy, a homotopy $\tilde{F}: Y \times I \to \tilde{X}$ is said to be a **lift** of F if $p \circ \tilde{f} = f$.

Proposition 0.2 (The homotopy lifting property). Given a homotopy $F: Y \times I \to X$, and a lift \tilde{f}_0 of the map $f_0 = F|_{Y \times \{0\}}$, there is a unique lift $\tilde{F}: Y \times I \to X$ of F such that $\tilde{F}|_{Y \times \{0\}} = \tilde{f}_0$.

Proof. Pick an open cover U_{α} of X such that $p^{-1}(U_{\alpha})$ can be decomposed into a disjoint union of open sets each of which is homeomorphic to U_{α} under p.

Step 1. Let $y \in Y$ be given. We begin by constructing a lift $\tilde{F} : V \times I \to \tilde{X}$, for some neighborhood V of y. For each $t \in I$, we may pick some neighborhood V_t and some open interval I_t containing t such that $F(V_t \times I_t) \subset U_{\alpha}$. Cover I by finitely many I_t , and let V be the intersection of the corresponding V_t . Then, we may choose a finite partition $0 = t_0 < t_1 < \ldots < t_n = 1$ such that $F(V \times [t_i, t_{i+1}]) \subset U_{\alpha_i}$ for some index α_i .

We now construct a lift $\tilde{F}: V \times [0, t_i] \to \tilde{X}$ by induction on *i*. The base case i = 0 is given by \tilde{f}_0 . Suppose $\tilde{F}: V \times [0, t_i] \to \tilde{X}$ has been constructed. As $F(V \times [t_i, t_{i+1}]) \subset U_{\alpha_i}$, we may choose some set $\tilde{U}_{\alpha_i} \in \tilde{X}$ containing $\tilde{F}(y, t_i)$ such that \tilde{U}_{α_i} is homeomorphic to U_{α_i} under *p*. Shrinking *V* if needed, by continuity we may assume that $\tilde{F}(V \times \{t_i\}) \subset \tilde{U}_{\alpha_i}$. We may then define \tilde{F} on the set $V \times [t_i, t_{i+1}]$ to be $p^{-1}F$, where p^{-1} denotes the homeomorphism $p^{-1}: U_{\alpha_i} \to \tilde{U}_{\alpha_i}$. By the pasting lemma, the resulting function $\tilde{F}: V \times [0, t_{i+1}] \to \tilde{X}$ is continuous. This completes the induction, furnishing a map $\tilde{F}: V \times I \to \tilde{X}$ that lifts $F|_{V \times I}$.

Step 2. We prove uniqueness in the case where Y is a single point y. Let \tilde{F}, \tilde{F}' be two lifts of $F : \{y\} \times I \to X$ for which $\tilde{F}(y,0) = \tilde{F}'(y,0)$; once again, we may choose a finite partition $0 = t_0 < t_1 < \ldots < t_n = 1$ such that $F(\{y\} \times [t_i, t_{i+1}]) \subset U_{\alpha_i}$ for some index α_i . We claim that $\tilde{F} = \tilde{F}'$ on $[0, t_i]$ for all i; once again we proceed by induction. The base case i = 0 follows by assumption. Suppose $\tilde{F} = \tilde{F}'$ on $[0, t_i]$; as $\tilde{F}(\{y\} \times [t_i, t_{i+1}]), \tilde{F}'(\{y\} \times [t_i, t_{i+1}])$ are connected and $\tilde{F}(y, t_i) = \tilde{F}'(y, t_i)$, both must lie in the same open set $\tilde{U}_{\alpha_i} \in \tilde{X}$ that is homeomorphic to U_{α_i} under p. But, as $p|_{\tilde{U}_{\alpha_i}}$ is injective and $p\tilde{F} = F = p\tilde{F}'$, this implies that $\tilde{F} = \tilde{F}'$ on $\{y\} \times [t_i, t_{i+1}]$, completing the induction.

Step 3. We now prove the theorem. First, we show uniqueness: if $\tilde{F} : Y \times I \to \tilde{X}$ is a lift of F, then $\tilde{F}|_{\{y\}\times I}$ is a lift of $F|_{\{y\}\times I}$, so by Step 2, \tilde{F} is unique. Furthermore, given two lifts $\tilde{F}: V \times I \to \tilde{X}, \tilde{F}': V \times I \to \tilde{X}$ constructed in Step 1, by Step 2, \tilde{F} and \tilde{F}' must agree on $V \cap V'$. Therefore, by pasting together lifts $\tilde{F}: V \times I \to \tilde{X}$ for each point $y \in Y$, one obtains a well-defined lift $\tilde{F}: Y \times I \to \tilde{X}$, completing the proof of the proposition.

Corollary 0.3 (The path lifting property). Let $f : I \to X$ be a path such that $f(0) = x_0$. Given a point $\tilde{x}_0 \in p^{-1}(x_0)$, there exists a unique lift $\tilde{f} : I \to X$ of f such that $f(0) = \tilde{x}_0$. In particular, every lift of a constant path is constant.

Corollary 0.4 (The path homotopy lifting property). Let f_t be a path homotopy in X. Given a lift \tilde{f}_0 of f_0 , there exists a unique lift \tilde{f}_t in \tilde{X} of f_t ; this lift \tilde{f}_t is also a path homotopy.

As an application of the path lifting property, we have the following proposition. This is the result JJ assumed at the conclusion of Wednesday's lecture.

Proposition 0.5. The map $p_*: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0)$ is injective.

Proof. Suppose $[\tilde{f}_0] \in \ker p_*$; then there exists a homotopy f_t between $p\tilde{f}_0$ and the trivial loop e_{x_0} . Then, by the path homotopy lifting property, there exists a lift \tilde{f}_t of f_t between \tilde{f}_0 and $e_{\tilde{x}_0}$. Therefore, $[\tilde{f}_0] = [e_{\tilde{x}_0}]$, so ker p_* is trivial as desired.