The fundamental group of S^{1}.

Kyle Miller

13 February 2011

We will show that $\pi_{1}\left(S^{1}\right) \approx \mathbb{Z}$. We will do this by constructing a homotopy-preserving isomorphism from paths in S^{1} to paths of \mathbb{R} which start at the origin and end at an integer, and then construct an isomorphism from the path classes of these paths of \mathbb{R} into \mathbb{Z}.

Our representation of S^{1} is the unit circle $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. From now on, the base point for the fundamental group is $x_{0}=(1,0)$ in S^{1}. Let $p: \mathbb{R} \rightarrow S^{1}$ be the quotient map defined by $t \mapsto(\cos 2 \pi t, \sin 2 \pi t)$. This can be imagined as a spiral in \mathbb{R}^{3} with an axis perpendicular to the XY plane being flattened onto the unit circle in this plane. We note that $p(0)=x_{0}$.

Lemma 1. Let $f: I \rightarrow S^{1}$ be a loop with base point x_{0}. There is a unique path $\tilde{f}: I \rightarrow \mathbb{R}$ such that $f=p \tilde{f}$ and $\tilde{f}(0)=0$. We will call \tilde{f} the lift of f.

Proof. Let $\left\{U_{1}, U_{2}\right\}$ be an open cover of S^{1} such that both U_{1} and U_{2} are homeomorphic to an open interval in \mathbb{R}. For concreteness, let $U_{1}=\left\{(x, y) \in S^{1} \left\lvert\, y>-\frac{1}{2}\right.\right\}$ and $U_{2}=\{(x, y) \in$ $S^{1} \left\lvert\, y<\frac{1}{2}\right.$.

We will show that we can break I into $0=t_{0}<t_{1}<\ldots<t_{n}=1$ so that $f\left(\left[t_{i-1}, t_{i}\right]\right)$ is entirely in U_{1} or entirely in U_{2}, for $1 \leq i \leq n$. Since f is compact, we see that $\left\{f^{-1}\left(U_{1}\right), f^{-1}\left(U_{2}\right)\right\}$ is an open cover of I, and so we can let ε be the Lebesgue number of this open cover. Choose t_{0}, \ldots, t_{n} so that $t_{i-1}<t_{i}$ and $t_{i}-t_{i-1}<\varepsilon$. Thus, $\left[t_{i-1}, t_{i}\right]$ is in either $f^{-1}\left(U_{1}\right)$ or $f^{-1}\left(U_{2}\right)$, and therefore $f\left(\left[t_{i-1}, t_{i}\right]\right)$ is in either U_{1} or U_{2}.

Each of the path components of $p^{-1}\left(U_{j}\right)$ is homeomorphic to U_{j}, for $j=1,2$. For, letting W be a path component of $p^{-1}\left(U_{j}\right),\left.p\right|_{W}$ onto U_{j} is a homeomorphism.

Here is a sketch of induction on i. What we do is construct \tilde{f} by starting with $\tilde{f}(0)=0$ and extending the domain of the function with each $\left[t_{i-1}, t_{i}\right]$. Say $B_{i}=f\left(\left[t_{i-1}, t_{i}\right]\right)$ is in U_{j}. Then $\tilde{f}\left(t_{i-1}\right)$ is in some path component W_{j} of $p^{-1}\left(U_{j}\right)$. If $\varphi: W_{j} \rightarrow U_{j}$ is the homeomorphism $\left.p\right|_{W_{j}}$ onto U_{j}, then φ gives a homeomorphism between B_{i} and a closed interval in W_{j}. This extends \tilde{f} by $\left.\tilde{f}\right|_{\left[t_{i-1}, t_{i}\right]}(s)=\varphi^{-1}(f(s))$, and by the pasting lemma this is continuous.

The uniqueness follows. For, if \tilde{f}_{1} and \tilde{f}_{2} are paths such that $p \tilde{f}_{1}=p \tilde{f}_{2}=f$, then, we can use the above induction on i to and the homeomomorphims to show $\tilde{f}_{1}\left(t_{i}\right)=\tilde{f}_{2}\left(t_{i}\right)$.

The following lemma follows from the fact that $f(1)=p \tilde{f}(1)$, and $f(1)=x_{0}$.
Lemma 2. If \tilde{f} is the lift of a loop f with base point x_{0}, then $\tilde{f}(1) \in \mathbb{Z}$.

The following lemma is left as an exercise. (The proof is given as the answer to the exercise).

Lemma 3. Let f, g be homotopic loops in S^{1}. Then $\tilde{f}(1)=\tilde{g}(1)$.
Proof. Let $F: I \times I \rightarrow S^{1}$ be a homotopy from f to g (that is, $F(t, 0)=f(t), F(t, 1)=g$, and $\left.F(0, s)=F(1, s)=x_{0}\right)$. For $s \in I$, let $h(s)$ be a path of the homotopy (where $h(s)(t)=F(t, s))$. Since F is continuous and $I \times I$ is compact, let δ be the Lebesgue number of the open cover $\left\{F^{-1}\left(U_{1}\right), F^{-1}\left(U_{2}\right)\right\}$, where U_{1} and U_{2} are as before. Let ℓ denote the operation which lifts a loop to a path in \mathbb{R} (so $\ell f=\tilde{f})$.

Claim: if $s_{1}, s_{2} \in I$ are such that $\left|s_{1}-s_{2}\right|<\frac{\delta}{2}$, then $\ell\left(h\left(s_{1}\right)\right)(1)$ and $\ell\left(h\left(s_{2}\right)\right)(1)$ are in the same path component of $p^{-1}\left(U_{1}\right)$ or $p^{-1}\left(U_{2}\right)$. We see that $h\left(s_{1}\right)(t)$ and $h\left(s_{2}\right)(t)$ are always both in U_{1} or in U_{2} for all $t \in I$ since $\left|s_{1}-s_{2}\right|<\delta$. Let $0=t_{0}<t_{1}<\ldots<t_{n}=1$ be so $t_{i}-t_{i-1}<\frac{\delta}{2}$. By definition, we see that $\ell\left(h\left(s_{1}\right)\right)$ and $\ell\left(h\left(s_{2}\right)\right)$ are in the same path component on $\{0\}$. We will proceed by induction on $0<i \leq n$, assuming $\ell\left(h\left(s_{1}\right)\right)(t)$ and $\ell\left(h\left(s_{2}\right)\right)(t)$ are in the same path component for all $t \in\left[0, t_{i-1}\right]$. Since the diameter of $\left[t_{i-1}, t_{i}\right] \times\left[s_{1}, s_{2}\right]$ is less than $\delta, F\left(\left[t_{i-1}, t_{i}\right] \times\left[s_{1}, s_{2}\right]\right)$ is contained entirely in U_{j} for some $j=1,2$. Thus, $\ell\left(h\left(s_{1}\right)\right)\left(\left[t_{i-1}, t_{i}\right]\right)$ and $\ell\left(h\left(s_{2}\right)\right)\left(\left[t_{i-1}, t_{i}\right]\right)$ are in the same path component of $p^{-1}\left(U_{j}\right)$. This completes the induction.

Using the same t_{i} as defined (for convenience), it follows that all $\ell\left(h\left(t_{i}\right)\right)(1)$ are in the same path component of $p^{-1}\left(U_{j}\right)$, for some j. Since $\ell\left(h\left(t_{0}\right)\right)=\tilde{f}$ and $\ell\left(h\left(t_{n}\right)\right)=\tilde{g}$, it follows that $\tilde{f}(1)$ and $\tilde{g}(1)$ are in the same path component W of $p^{-1}\left(U_{j}\right)$, for some j. And, since W has a diameter less than one, we conclude $\tilde{f}(1)$ and $\tilde{g}(1)$ must be equal to the same integer.

By this lemma, we see that f and g being homotopic implies \tilde{f} and \tilde{g} are homotopic by the homotopy $F(t, s)=(1-s) \tilde{f}(t)+s \tilde{g}(t)$.

Let G be the set of all path classes in \mathbb{R} for paths which start at the origin and end at an integer. Because \mathbb{R} is convex, each end point has exactly one path class. Since homotopic loops in S^{1} have homotopic lifts, lifting induces an injection from $\pi_{1}\left(S^{1}\right)$ into G. The path $f(t)=(\cos 2 \pi n t, \sin 2 \pi n t)$ for $n \in \mathbb{Z}$ lifts to $\tilde{f}(t)=n t$, and $\tilde{f}(1)=n$, thus lifting is also a surjection onto G.

For α, β path classes in G, define path addition $\alpha+\beta$ to be $\alpha \tau_{\alpha}(\beta)$ where $\tau_{\alpha}(\beta)$ means translate β so it starts at the end point of class α, making the concatenation work. It is clear that this operation is well defined. We see that $f g=p(\tilde{f}+\tilde{g})$, where \tilde{f} and \tilde{g} are the lifted f and g, since $p(\tilde{f}+\tilde{g})=p\left(\tilde{f} \tau_{\tilde{f}}(\tilde{g})\right)=p(\tilde{f}) p\left(\tau_{\tilde{f}}(\tilde{g})\right)=f p(\tilde{g})=f g$. Thus, this operation on G defines an isomorphism between G and $\pi_{1}\left(S^{1}\right)$ via lifting.

We will prove that G is isomorphic to \mathbb{Z}. We have already seen elements of G and \mathbb{Z} are in one-to-one correspondence. If $\tilde{f}(1)=n$ and $\tilde{g}(1)=m$, then $(\tilde{f}+\tilde{g})(1)$ is $n+m$. The operation of taking the endpoint is thus an isomorphism.

This proves our theorem that $\pi_{1}\left(S^{1}\right) \approx \mathbb{Z}$.

