Exercises from February 16th

18.904 Spring 2011

These are exercises from Rafael's and Gabriels's talks. Solutions are on the following page.
Exercise 1 (Rafael). Read carefully the following attempt to prove that $\pi_{1}\left(S^{1} \vee S^{1}\right) \approx F_{2}$.
"Let F_{2} be the free group on two generators. Giving a homomorphism from F_{2} to any group G is the same as giving two homomorphisms from \mathbb{Z} to G, which is equivalent to giving two elements of G. In the same way, if (X, x_{0}) is a pointed topological space and if we have two elements of $\pi_{1}\left(X, x_{0}\right)$ - we can think of these two elements as maps from $S^{1} \rightarrow X$ - then we get a map $S^{1} \vee S^{1} \rightarrow X$ and consequently a map $\pi_{1}\left(S^{1} \vee S^{1}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$.

Since we just showed that $\pi_{1}\left(S^{1} \vee S^{1}\right)$ satisfies the universal property of F_{2}, namely, giving a homomorphism $\pi_{1}\left(S^{1} \vee S^{1}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is equivalent to giving two elements of $\pi_{1}\left(X, x_{0}\right)$, we can conclude that these two groups are isomorphic."

This seems to be a very nice proof that $\pi_{1}\left(S^{1} \vee S^{1}\right) \approx F_{2}$. However, this proof is not correct. Explain. (Keep in mind that this is a pre van Kampen proof, and cannot implicitly make use of that theorem or its consequences.)
Exercise 2 (Gabriel). Complete the example given in lecture by showing that $\mathbb{Z} / 2 \mathbb{Z}=\mathbb{Z} / 2 \mathbb{Z} \ltimes \mathbb{Z}$ where the semi-direct product is taken over the homomorphism family $\phi_{i}: \mathbb{Z} \rightarrow \mathbb{Z}$ defined. $\phi_{0}(x)=$ $x, \phi_{1}(x)=-x$
Exercise 3 (Gabriel). Let A be the free product on $a_{1} \ldots a_{n}, B$ be the free product on $b_{1} \ldots b_{m}, C$ the free product on $c_{1} \ldots c_{k}$ with $k \leq n, m$.

Take homomorphisms $\varphi: c_{i} \rightarrow a_{i} \psi: c_{i} \rightarrow b_{i}$
Prove that $A *_{C} B$ is the free product on $n+m-k$ elements.

Solution to Exercise 1: The flaw in this proof is that it assumes that every group occurs as a fundamental group of a topological space. It is true that every group occurs as a fundamental group, but one needs van Kampen's theorem to prove this result.

To make this proof correct, we also need to show that every group occurs as a fundamental group of a pointed topological space. If we show this, which will be done later in the course, then this fact together with the proof above makes it a very nice (and correct) proof that $\pi_{1}\left(S^{1} \vee S^{1}\right) \approx F_{2}$.

Solution to Exercise 2: We take ρ_{1}, ρ_{2} to be differently labeled generators of $\mathbb{Z} / 2 \mathbb{Z}$. Let

$$
\varphi\left\{\begin{array}{l}
e \rightarrow(0,0) \\
\rho_{1} \rightarrow(1,0) \\
\rho_{2} \rightarrow(1,1)
\end{array}\right.
$$

Then this generates a homomorphism from $A=\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z} \rightarrow G=\mathbb{Z} / 2 \mathbb{Z} \ltimes \mathbb{Z}$. To see why, we observe that the only cancelation in A under multiplication is that $\rho_{1}^{2}=e, \rho_{2}^{2}=e$, and this cancelation applies under the image as well, since $\phi\left(\rho_{1}\right), \phi\left(\rho_{2}\right)$ are both of order 2 , so that ϕ is operation preserving.
We then wish to show that this is an isomorphism:
Injective: we observe that every reduced word is $\rho_{2}^{a}\left(\rho_{1} \rho_{2}\right)^{b} \rho_{1}^{c}$ for some choice of a, b, c with $a, b \in$ $\{0,1\}, c \geq 0$ Let w a word in ρ_{1}, ρ_{2} reduced, and suppose $\phi(w)=(0,0)$. Then $\phi\left(\rho_{2}\right)^{a} \phi\left(\rho_{1} \rho_{2}\right)^{b} \phi\left(\rho_{1}\right)^{c}=$ $(0,0) .(1,1)^{a}(0,1)^{b}(1,0)^{c}=(0,0)$. But this is $(1,1)^{a}(0,-1)^{b}(1,0)^{c}$. In particular, for all possible choices of a, c this produces elements in $\{(0,-b),(0,1+b),(1,-b),(1,1+b)\}$, equal to $(0,0)$ iff $a, b, c=0$. In particular, this means that ϕ is injective, since no non-identity element is taken to the identity.

Surjective: In particular, we also have that given $n>0 \phi\left(\left(\rho_{1} \rho_{2}\right)^{n}\right)=(0,-n), \phi\left(\rho_{2}\left(\rho_{1} \rho_{2}\right)^{n-1}\right)=$ $(1, n), \phi\left(\rho_{2}\left(\rho_{1} \rho_{2}\right)^{n-1} \rho_{1}\right)=(0, n), \phi\left(\left(\rho_{1} \rho_{2}\right)^{n} \rho_{1}\right)=(1,-n)$, so that we can generate any combination (m, n) for $m \in\{0,1\}, n \in \mathbb{Z}$. This shows ϕ surjective, so that ϕ is a bijective homomorphism, and hence an isomorphism from $A=\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \ltimes \mathbb{Z}$, as desired.

Solution to Exercise 3: The result follows by a fairly direct application of the Fundamental Principle of Amalgamated Free Products. Take the free group generated by $a_{1} \ldots a_{n}, b_{k+1} \ldots b_{m}$ to be D. Let G a group, $f: A \rightarrow G, g: B \rightarrow G$ homomorphisms such that the maps $C \rightarrow A \rightarrow G, C \rightarrow B \rightarrow G$ agree. Then in particular, we may define a homomorphism on D, h, by $h\left(a_{i}\right)=f\left(a_{i}\right)=g\left(b_{i}\right)$ for $i \leq k . h\left(a_{i}\right)=f\left(a_{i}\right)$ and $h\left(b_{i}\right)=g\left(b_{i}\right)$ for $i>k$. Then for each f, g, G satisfying the above we get a unique map from $\rightarrow G$. On the other hand, given any group G, homomorphism $h: A *_{C} B \rightarrow G$, we can define $f: A \rightarrow G$ by $f\left(a_{i}\right)=h\left(a_{i}\right), g\left(b_{i}\right)=h\left(a_{i}\right)$ if $i \leq k$ and $g\left(b_{i}\right)=h\left(b_{i}\right)$ otherwise. Then $h(\varphi(c))=h(\varphi(c))$, so that homomorphisms from D to G are equivalent to homomorphisms from A to G and B to G which agree on the image of C.

In particular, this means that D satisfies the fundamental principle of amalgamated free groups, so that $A *_{C} B \equiv D \equiv$ the free group on $n+m-k$ elements, as desired.

