
Exercises from February 16th
18.904 Spring 2011

These are exercises from Rafael’s and Gabriels’s talks. Solutions are on the following page.

Exercise 1 (Rafael). Read carefully the following attempt to prove that π1(S1 ∨ S1) ≈ F2.
“Let F2 be the free group on two generators. Giving a homomorphism from F2 to any group G

is the same as giving two homomorphisms from Z to G, which is equivalent to giving two elements
of G. In the same way, if (X,x0) is a pointed topological space and if we have two elements of
π1(X,x0) − we can think of these two elements as maps from S1 → X − then we get a map
S1 ∨ S1 → X and consequently a map π1(S1 ∨ S1)→ π1(X,x0).

Since we just showed that π1(S1 ∨ S1) satisfies the universal property of F2, namely, giving a
homomorphism π1(S1 ∨ S1)→ π1(X,x0) is equivalent to giving two elements of π1(X,x0), we can
conclude that these two groups are isomorphic.”

This seems to be a very nice proof that π1(S1 ∨ S1) ≈ F2. However, this proof is not correct.
Explain. (Keep in mind that this is a pre van Kampen proof, and cannot implicitly make use of
that theorem or its consequences.)

Exercise 2 (Gabriel). Complete the example given in lecture by showing that Z/2Z = Z/2Z n Z
where the semi-direct product is taken over the homomorphism family φi : Z→ Z defined. φ0(x) =
x, φ1(x) = −x

Exercise 3 (Gabriel). Let A be the free product on a1...an, B be the free product on b1...bm, C
the free product on c1...ck with k ≤ n,m.

Take homomorphisms ϕ : ci → ai ψ : ci → bi
Prove that A ∗C B is the free product on n+m− k elements.
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Solution to Exercise 1: The flaw in this proof is that it assumes that every group occurs as a
fundamental group of a topological space. It is true that every group occurs as a fundamental
group, but one needs van Kampen’s theorem to prove this result.

To make this proof correct, we also need to show that every group occurs as a fundamental group
of a pointed topological space. If we show this, which will be done later in the course, then this
fact together with the proof above makes it a very nice (and correct) proof that π1(S1 ∨ S1) ≈ F2.

Solution to Exercise 2: We take ρ1, ρ2 to be differently labeled generators of Z/2Z. Let

ϕ

 e→ (0, 0)
ρ1 → (1, 0)
ρ2 → (1, 1)

Then this generates a homomorphism from A = Z/2Z ∗ Z/2Z → G = Z/2Z n Z. To see why,
we observe that the only cancelation in A under multiplication is that ρ2

1 = e, ρ2
2 = e, and this

cancelation applies under the image as well, since φ(ρ1), φ(ρ2) are both of order 2, so that φ is
operation preserving.

We then wish to show that this is an isomorphism:
Injective: we observe that every reduced word is ρa

2(ρ1ρ2)bρc
1 for some choice of a, b, c with a, b ∈

{0, 1}, c ≥ 0 Let w a word in ρ1, ρ2 reduced, and suppose φ(w) = (0, 0). Then φ(ρ2)aφ(ρ1ρ2)bφ(ρ1)c =
(0, 0). (1, 1)a(0, 1)b(1, 0)c = (0, 0). But this is (1, 1)a(0,−1)b(1, 0)c. In particular, for all possible
choices of a, c this produces elements in {(0,−b), (0, 1 + b), (1,−b), (1, 1 + b)}, equal to (0, 0) iff
a, b, c = 0. In particular, this means that φ is injective, since no non-identity element is taken to
the identity.

Surjective: In particular, we also have that given n > 0 φ((ρ1ρ2)n) = (0,−n), φ(ρ2(ρ1ρ2)n−1) =
(1, n), φ(ρ2(ρ1ρ2)n−1ρ1) = (0, n), φ((ρ1ρ2)nρ1) = (1,−n), so that we can generate any combination
(m,n) for m ∈ {0, 1}, n ∈ Z. This shows φ surjective, so that φ is a bijective homomorphism, and
hence an isomorphism from A = Z/2Z ∗ Z/2Z→ Z/2Z n Z, as desired.

Solution to Exercise 3: The result follows by a fairly direct application of the Fundamental Principle
of Amalgamated Free Products. Take the free group generated by a1...an, bk+1...bm to be D. Let
G a group, f : A→ G, g : B → G homomorphisms such that the maps C → A→ G,C → B → G
agree. Then in particular, we may define a homomorphism on D, h, by h(ai) = f(ai) = g(bi) for
i ≤ k. h(ai) = f(ai) and h(bi) = g(bi) for i > k. Then for each f, g,G satisfying the above we get
a unique map from → G. On the other hand, given any group G, homomorphism h : A ∗C B → G,
we can define f : A→ G by f(ai) = h(ai), g(bi) = h(ai) if i ≤ k and g(bi) = h(bi) otherwise. Then
h(ϕ(c)) = h(ϕ(c)), so that homomorphisms from D to G are equivalent to homomorphisms from
A to G and B to G which agree on the image of C.

In particular, this means that D satisfies the fundamental principle of amalgamated free groups,
so that A ∗C B ≡ D ≡ the free group on n+m− k elements, as desired.


