
Exercises from February 11th
18.904 Spring 2011

These are exercises from Marcel’s and Danny’s talks. Solutions are on the following page.

Exercise 1 (Marcel). Prove that any convex subset X of Rn is contractible.

Exercise 2 (Marcel, adapted from Ch. 2 Ex. 2 of Hatcher). Construct an explicit homotopy
between Rn − {0} and the subset Sn−1 which is constant on Sn−1. This is an example of a
“deformation retraction,” a special case of homotopy. Use this to prove that Rn − {0} is not
contractible.

Exercise 3 (Danny, adapted from Hatcher Ex. 1.1.14). Let X and Y be spaces containing the
points x0 and y0 respectively. Find (with proof) an explicit isomorphism between π1(X×Y, (x0, y0))
and π1(X,x0)× π1(Y, y0).

Exercise 4 (Danny, adapted from Munkres 60.1). Find the fundamental group of the “solid torus”
consisting of the torus plus its interior (as in a solid donut).
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Solution to Exercise 1: We show that X is contractible by providing a homotopy between X and
a point x0 in X. We claim that the map f : I ×X → X defined by ft(x) = tx0 + (1− t)x is such
a homotopy. We see that f0(x) = x and f1(x) = x0. This map is continuous because it is a linear
addition of vectors. Finally, this map is well defined because it defines a straight line between x
and x0, which by our assumption of X being convex, is contained entirely in X.

Solution to Exercise 2: The map ft(x) = x/|x|t works. f0(x) = x and f1(x) = x/|x|, which
normalizes the length of every vector to 1 so that it is in Sn−1. For x in Sn−1, |x| = 1 so ft(x) = x.
This map is continuous because it is a composition of algebraic functions. It is well defined because
|x| is never 0. Because Rn − {0} is homotopic to the space Sn−1, which is not contractible, the
space Rn − {0} is not contractible.

Solution to Exercise 3: Let f be a loop in X × Y based at (x0, y0) and pi be the projection map
from X × Y on the ith coordinate.

We claim that φ : π1(X × Y, (x0, y0)) → π1(X,x0) × π1(Y, y0) which defined by [f ] 7→ ([p1 ◦
f ], [p2 ◦ f ]) is the desired isomorphism. We need to show:

(1) φ is well-defined. For this we need to show that if f̃ is another loop with the same base
point as f for which f ' f̃ , then pi ◦ f ' pi ◦ f̃ for each i. First notice that since
f(0) = f(1) = f̃(0) = f̃(1) = (x0, y0), then certainly pi ◦ f(0) = pi ◦ f̃(0) = x0 or y0

(depending on i), and the same holds for f(1). Moreover, projections are continuous and
compositions of continuous maps are continuous, so the projections are continuous. This
tells us that pi ◦ f and pi ◦ f̃ are loops in X and Y based at x0 or y0 (depending on i).

Now let F (t, s) be a homotopy with F (0, s) = f(s) and F (1, s) = f̃(s). πi◦F is continuous
since F is, and we have both πi ◦ F (0, s) = πi ◦ f(s) and πi ◦ F (1, s) = πi ◦ (f̃(s)) by
construction. Thus πi ◦ F is a homotopy from πi ◦ f to πi ◦ f̃ .

(2) φ−1 is well-defined. For this we need to show that if g ' g̃ are loops in X and h ' h̃

are loops in Y , then (g, h) ' (g̃, h̃). It is an elementary fact of point-set topology that if
g : Z → X and h : Z → Y are continuous, then the map f : Z → X × Y defined by
f(z) = (g(z), h(z)) is continuous. This allows us to reverse the logic in our previous proof
to get the desired homotopy (treating the homotopies from g to g̃ and h to h̃ as component
functions of a new homotopy).

(3) φ is a homomorphism. For this we have:

φ([f ] · [g]) = φ([fg])
= ([p1 ◦ (fg)], [p2 ◦ (fg)]
= ([p1 ◦ f ][p1 ◦ g], [p2 ◦ f ][p2 ◦ g])
= ([p1 ◦ f ], [p2 ◦ f ])([p1 ◦ g], [p2 ◦ g]) = φ([f ])φ([g])

Solution to Exercise 4: We can write the solid torus as S1 × D2. Hence the solid torus has
fundamental group isomorphic to π1(Z)× π1(1) ≈ Z.


