Exercises from February 9th

18.904 Spring 2011

These are exercises from JJ's and Kyle's talks. Solutions are on the following page.
Exercise 1 (JJ). Let D be the open unit disc and let $f: D \rightarrow D$ be a continuous map. Does the Brouwer Fixed Point Theorem hold in this context? That is, must $f(D)$ have a fixed point?

Exercise 2 (Kyle). Let f, g be homotopic loops in S^{1}. Show that $\tilde{f}(1)=\tilde{g}(1)$, where \tilde{f} and \tilde{g} denote the lifts to maps $\mathbf{R} \rightarrow S^{1}$ taking 0 to the basepoint of S^{1}.

Solution to Exercise 1: The theorem does not hold in this case, because we cannot find a retract from the open disc to the 1-sphere, a step that is key to our proof of the theorem.

More specifically, consider the continuous map that shrinks the distance between a point in D and the border of D by half:

$$
f(x, y)=\left(\frac{1}{2}\left(\sqrt{1-y^{2}}+x\right), y\right)
$$

The map f does not fix any points in the open disc.
Solution to Exercise 2: Let $F: I \times I \rightarrow S^{1}$ be a homotopy from f to g (that is, $F(t, 0)=f(t)$, $F(t, 1)=g$, and $F(0, s)=F(1, s)=x_{0}$). For $s \in I$, let $h(s)$ be a path of the homotopy (where $h(s)(t)=F(t, s)$). Since F is continuous and $I \times I$ is compact, let δ be the Lebesgue number of the open cover $\left\{F^{-1}\left(U_{1}\right), F^{-1}\left(U_{2}\right)\right\}$, where U_{1} and U_{2} are as before. Let ℓ denote the operation which lifts a loop to a path in \mathbf{R} (so $\ell f=\tilde{f}$).

Claim: if $s_{1}, s_{2} \in I$ are such that $\left|s_{1}-s_{2}\right|<\frac{\delta}{2}$, then $\ell\left(h\left(s_{1}\right)\right)(1)$ and $\ell\left(h\left(s_{2}\right)\right)(1)$ are in the same path component of $p^{-1}\left(U_{1}\right)$ or $p^{-1}\left(U_{2}\right)$. We see that $h\left(s_{1}\right)(t)$ and $h\left(s_{2}\right)(t)$ are always both in U_{1} or in U_{2} for all $t \in I$ since $\left|s_{1}-s_{2}\right|<\delta$. Let $0=t_{0}<t_{1}<\ldots<t_{n}=1$ be so $t_{i}-t_{i-1}<\frac{\delta}{2}$. By definition, we see that $\ell\left(h\left(s_{1}\right)\right)$ and $\ell\left(h\left(s_{2}\right)\right)$ are in the same path component on $\{0\}$. We will proceed by induction on $0<i \leq n$, assuming $\ell\left(h\left(s_{1}\right)\right)(t)$ and $\ell\left(h\left(s_{2}\right)\right)(t)$ are in the same path component for all $t \in\left[0, t_{i-1}\right]$. Since the diameter of $\left[t_{i-1}, t_{i}\right] \times\left[s_{1}, s_{2}\right]$ is less than $\delta, F\left(\left[t_{i-1}, t_{i}\right] \times\left[s_{1}, s_{2}\right]\right)$ is contained entirely in U_{j} for some $j=1,2$. Thus, $\ell\left(h\left(s_{1}\right)\right)\left(\left[t_{i-1}, t_{i}\right]\right)$ and $\ell\left(h\left(s_{2}\right)\right)\left(\left[t_{i-1}, t_{i}\right]\right)$ are in the same path component of $p^{-1}\left(U_{j}\right)$. This completes the induction.

Using the same t_{i} as defined (for convenience), it follows that all $\ell\left(h\left(t_{i}\right)\right)(1)$ are in the same path component of $p^{-1}\left(U_{j}\right)$, for some j. Since $\ell\left(h\left(t_{0}\right)\right)=\tilde{f}$ and $\ell\left(h\left(t_{n}\right)\right)=\tilde{g}$, it follows that $\tilde{f}(1)$ and $\tilde{g}(1)$ are in the same path component W of $p^{-1}\left(U_{j}\right)$, for some j. And, since W has a diameter less than one, we conclude $\tilde{f}(1)$ and $\tilde{g}(1)$ must be equal to the same integer.

