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We follow [Dri75, §§2–3] and parts of [Poo17]. The algebraic approach to elliptic modules is contained in
[Dri75, §2], while [Dri75, §3] describes the analytic approach. We will focus more on the former, but will
sketch some things from the latter afterward.

1 Algebraic approach [Dri75, §2]
Let B be a commutative ring of characteristic p > 0, and consider the Frobenius endomorphism

τ : B −→ B

t 7−→ tp

which, in particular, is an endomorphism of additive groups. The multiplication by b endomorphism

·b : B −→ B

t 7−→ tb

is also an additive endomorphism. These endomorphisms generate B{τ}, the ring of additive polynomials,
whose elements are polynomials in τ over B with the usual additive structure, but with a product structure
given by composition, e.g., τ · b = bp · τ .

There are two maps relating B to B{τ}:

ε : B −→ B{τ}
b 7−→ ·b

D : B{τ} −→ B
n∑
i=0

biτ
i 7−→ b0

We will also fix the following notation:

Notation 1.1. We denote by k a global field of characteristic p, and fix a place ∞ of k. The completion of
k at a place v will be denoted kv. There is a normed absolute value |·|v corresponding to this place v; when
v =∞, we will denote |·|∞ by |·|. Finally, we set

A =
{
x ∈ k

∣∣ |x|v ≤ 1 for all v 6=∞
}
,

and denote by Av the completion of A at v ∈ SpecA.

Now fix an A-field i : A→ K. Recall that the pullback i∗(SpecK) ∈ SpecA is called the characteristic of
the field K, and i is an embedding if and only if we have generic characteristic.

We can now define elliptic modules over A. Note that these are now known as Drinfel′d modules.

Definition 1.2. An elliptic A-module over K is a homomorphism

φ : A −→ K{τ}

such that i = D ◦ φ, but φ 6= ε ◦ i.
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The second condition in Definition 1.2 makes the notion non-trivial. These modules are the main object
of study in this seminar.

Definition 1.3. There is a degree map deg : K{τ} → Z, where

deg

(
n∑
i=0

aiτ
i

)
= pn

when an 6= 0, and deg 0 = 0.

Proposition 1.4 [Dri75, Prop. 2.1(a)]. φ is an imbedding.

Proof. If the kernel of φ is nonzero, then it must be maximal, since K{τ} is a domain and A is one-dimensional.
Then, the image of φ is a subfield of K, i.e., Imφ ⊂ ε(K), which implies φ = ε ◦ i, contradicting the second
condition in Definition 1.2.

The following relates the degree to the absolute value associated to the place ∞.

Proposition 1.5 [Dri75, Prop. 2.1(b)]. There exists d > 0 such that deg φ(a) = |a|d for all a ∈ A.

Proof. The proof is just checking a bunch of little details.

• deg(ab) =
(
deg φ(a)

)(
deg φ(b)

)
(multiplication of τ ’s works well, even if the ring is non-commutative);

• deg
(
φ(a+ b)

)
≤ max

{
deg φ(a),deg φ(b)

}
;

• deg φ(a) = 0 if and only if a = 0;
• deg φ(a) ≥ 1 for a 6= 0;
• deg φ(a) > 1 for some a ∈ A.

This means deg ◦ φ gives a nontrivial absolute value on k. This absolute value is not a finite place since
Imφ 6⊂ ε(K) (see the proof of Proposition 1.4), hence deg φ(a) = |a|d.

Definition 1.6. The number d in Proposition 1.5 is the rank of the elliptic A-module φ.

We now construct an example of an elliptic A-module when A is the polynomial ring over a finite field.

Example 1.7. Let A = Fq[x], and let K be its function field. Let φ|Fq
= ε ◦ i|Fq

, and let

φ(x) =

d∑
i=0

ajτ
j logp q

for some aj ∈ K. If d ≥ 1 and ad 6= 0, then the rank of φ is d.

In this manner, we can give the function field K = Fq(x) an interesting structure as a module over
A = Fq[x], and in general, elliptic modules allow us to put interesting A-module structures on A-fields K.

Theorem 1.8 [Dri75, Cor. to Prop. 2.2]. The rank of an elliptic A-module is a positive integer.

We outline the proof of Theorem 1.8 first. First, we look for certain finite subgroups of the algebraic
clousre of K, given by the roots of a polynomial φ(a) for suitable a ∈ A, thought of as a polynomial with
variable τ . We can then count the number of roots of φ(a) in multiple ways, forcing d to be a positive integer.

Proof. Let β ∈ SpecA such that β 6= i∗(SpecK), i.e., such that β is not the characteristic of K. Since A is a
Dedekind domain, it has a class number h, and so βh = (a) is a principal ideal. Now let K be the algebraic
closure of K, and consider the finite subgroup of roots of φ(a), which we denote by φ[a] ⊂ K. Note that
#φ[a] = pd deg a. On the other hand,

φ[a] '
t⊕
i=1

A/βei ,

hence a counting argument shows that ei = h and t = d. This forces d to be an integer.

2



We pause to connect elliptic modules to the material we have been covering so far in this seminar.

Example 1.9 (Carlitz modules). In the situation of Example 1.7, let

φ(x) = x+ τ.

Since φ(a) = Ca matches the homomorphism defining a Carlitz module, we see that Carlitz modules are
examples of rank one elliptic A-modules.

We will see later that elliptic curves are analogous to rank two elliptic A-modules.

Definition 1.10 (Morphisms). Let φ : A → K{τ} and ψ : A → K{τ} be two elliptic A-modules. Then, a
morphism φ→ ψ is an element P ∈ K{τ} such that φaP = Pψa for all a ∈ A.

If P 6= 0, then we say that P is an isogeny and that the elliptic modules are isogenous.

Following [Poo17, Def. 3.8], if we think about K{τ} as the endomorphisms of Ga, then we can think of a
morphism of elliptic modules as an endomorphism P of Ga making the diagram

Ga Ga

Ga Ga

φa

P P

ψa

commute.

Proposition 1.11. Isogenous modules have the same rank.

Proof. We have (degP )|a|rankφ = |a|rankψ · degP , hence rankφ = rankψ.

For elliptic curves, every isogeny has a dual; one can prove the same statement for elliptic modules:

Fact 1.12 (Dual isogenies [Dri75, Cor. to Prop. 2.3]). Every isogeny has a dual, i.e., can be composed with
another isogeny to obtain an endomorphism which is multiplication by some nonzero a ∈ A.

We will not prove this, since it is a bit tangential to what we are doing. Proving Fact 1.12 takes a bit
of work: The idea is that you want to understand the structure of the torsion points when multiplying by
an element a ∈ A, and thereby understand the kernel of these isogenies. You can then characterize what
these kernels can or can’t be. One of the characterizations is that there is a morphism that goes in the other
direction whose composition is multiplication by an element a ∈ A; you can then check that this is an isogeny.
The a that shows up in Fact 1.12 can then be thought of as the degree of the isogeny.

2 Analytic approach [Dri75, §2]
We adopt the same notation as in Notation 1.1. In addition, we denote k∞ to be the completion of k at ∞,
and let L be a finite extension of k∞ that is also a A-field with separable closure Ls.

Definition 2.1. A lattice over L is a finitely generated discrete A-submodule in Ls that is invariant under
the Galois group Gal(Ls/L). If Γ1,Γ2 are two lattices of dimension d, then a morphism φ : Γ1 → Γ2 is a
number α ∈ Ls such that αΓ1 ⊂ Γ2.

This is like the usual notion of a lattice in C.

Theorem 2.2 [Dri75, Prop. 3.1]. The category of elliptic A-modules of rank d over L is equivalent to the
category of lattices of dimension d over L.

The crux of the argument relies on constructing a surjective, k-linear map e(z) : L → L with kernel Γ,
inducing a bijection

e(z) : L/Γ
∼−−−−−→

analytic
L
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that is similar to the Carlitz exponential from before. This map is defined as

e(z) = z
∏
γ∈Γ
γ 6=0

(
1− z

γ

)
.

You can then prove the following, which would take some time (see [Poo17, Thm. 2.2]):

1. Uniqueness: use the Weierstrass preparation theorem;
2. Convergence;
3. Surjectivity;
4. k-linearity: e(x+ y) = e(x) + e(y);
5. e(cx) = c · e(x) for all c ∈ k;
6. ker(e) = Γ.

The proofs are similar to the material about Carlitz modules we have already seen.
Now given such an isomorphism

L/Γ
∼−→
e
L,

we obtain an “exotic” A-module structure on L: for a ∈ A, the action of a on L is given by

L/Γ L/Γ

L L

∼
e

·a

∼

e

φa

Claim 2.3 [Poo17, Prop. 2.3]. φa is a polynomial.

Proof. First, ker(a) = (a−1Γ)/Γ ∼= Γ/aΓ. But Γ is an A-module, hence

Γ/aΓ ∼= (A/aA)r

is a finite group of order |a|r. The kernel of φa is just the image of the kernel upstairs e(a−1Γ/Γ), and

φa(z) = az
∏

t∈a−1Γ/Γ
t 6=0

(
1− z

e(t)

)

One needs to check that φa(e(z)) and e(az) have the same zeroes, and that the coefficient of z is the same.

This shows that you can reconstruct these polynomials φa from the exotic A-module structure.
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