K-theory seminar
Lecture 4 • Andrew Snowden • February 6, 2015

1. K-theory of schemes

1.1. Definitions. Let X be a scheme. We define $\mathcal{P}(X)$ to be the category of locally free sheaves on X of finite rank, regarded as an exact category. We define $K_i(X)$ to be $K_i(\mathcal{P}(X))$.

Suppose that X is noetherian. Then the category $\mathcal{M}(X)$ of coherent sheaves on X is abelian, and we define $G_i(X) = K_i(\mathcal{M}(X))$. The inclusion $\mathcal{P}(X) \subset \mathcal{M}(X)$ induces a map $K_i(X) \to G_i(X)$. If X is regular, then this map is an isomorphism (since every coherent sheaf then admits a finite length resolution by locally free sheaves).

Let M be a contravariant functor on the category of noetherian schemes with flat morphisms. If every coherent sheaf on X is flat and Y is a contravariant functor from schemes to abelian groups, then M embeds into a sheaf in $\mathcal{M}(X)$ and $\mathcal{P}(X)$.

1.2. Pull-back maps. Let $f: X \to Y$ be a map of schemes. Then there is an exact functor $f^*: \mathcal{P}(Y) \to \mathcal{P}(X)$, which induces a homomorphism $f^*: K_i(Y) \to K_i(X)$. In this way, K_i is a contravariant functor from schemes to abelian groups.

Now suppose that f is flat and X and Y are noetherian. Then $f^*: \mathcal{M}(Y) \to \mathcal{M}(X)$ is an exact functor, and so there is an induced map $f^*: G_i(Y) \to G_i(X)$. In this way, G_i is a contravariant functor on the category of noetherian schemes with flat morphisms.

More generally, let $\mathcal{M}(Y, f^*) \subset \mathcal{M}(Y)$ be the category of sheaves M such that $L_i f^*(M) = 0$ for $i > 0$. Then f^* induces an exact functor $\mathcal{M}(Y, f^*) \to \mathcal{M}(X)$, and thus homomorphisms $K_i(\mathcal{M}(Y, f^*)) \to G_i(X)$. If f has finite Tor dimension (i.e., $L_i f^* = 0$ for $i \gg 0$, which holds if Y is regular) and every coherent sheaf on Y is a quotient of a vector bundle (e.g., Y is projective over an affine scheme) then every coherent sheaf on Y admits a finite resolution by sheaves in $\mathcal{M}(Y, f^*)$, and so $K_i(\mathcal{M}(Y, f^*)) = G_i(Y)$. In this case, f^* induces a map $G_i(Y) \to G_i(X)$. For $i = 0$, this is an Euler characteristic construction: for a coherent sheaf M on Y we have

$$f^*([M]) = \sum_{i \geq 0} (-1)^i[L_i f^*(M)],$$

where $[-]$ denotes the class in G_0. The sum is finite due to the finiteness of Tor dimension.

1.3. Push-forward maps. Let $f: X \to Y$ be a finite morphism of noetherian schemes. Then f_* induces an exact functor $\mathcal{M}(X) \to \mathcal{M}(Y)$, and we get homomorphisms $f_*: G_i(X) \to G_i(Y)$.

More generally, suppose that f is proper. Then $R^if_* = 0$ for $i \gg 0$, and each R^if_* takes coherent sheaves to coherent sheaves. Let $\mathcal{M}(X, f_*) \subset \mathcal{M}(X)$ be the category of sheaves M on which $R^if_*(M) = 0$ for $i > 0$. Then f_* induces homomorphisms $K_i(\mathcal{M}(X, f_*)) \to K_i(Y)$. If every coherent sheaf on X embeds into a sheaf in $\mathcal{M}(X, f_*)$ (which is automatic if X
admits an ample line bundle) then $K_i(\mathcal{M}(X, f_\ast)) = K_i(\mathcal{M}(X)) = G_i(X)$, and we get a homomorphism $f_\ast : G_i(X) \to G_i(Y)$. For $i = 0$, this is an Euler characteristic:

$$f_\ast(M) = \sum_{i \geq 0} (-1)^i [R^i f_\ast(M)].$$

Proposition 1. Let X and Y be noetherian schemes admitting ample line bundles, and let $f : X \to Y$ be a proper map of finite Tor dimension. Then f_\ast induces a map $K_i(X) \to K_i(Y)$, and the diagram

$$
\begin{array}{ccc}
K_i(X) & \longrightarrow & G_i(Y) \\
\downarrow f_\ast & & \downarrow f_\ast \\
K_i(Y) & \longrightarrow & G_i(Y)
\end{array}
$$

commutes.

Proof. Let $\mathcal{P}(X, f_\ast)$ be the category of vector bundles \mathcal{E} on X such that $R^i f_\ast(\mathcal{E}) = 0$ for all $i > 0$. Using the ample line bundle on X, every vector bundle on X embeds into one in $\mathcal{P}(X, f_\ast)$ such that the quotient is also a vector bundle. Thus $K_i(\mathcal{P}(X, f_\ast)) = K_i(\mathcal{P}(X)) = K_i(X)$.

Let $\mathcal{H}(Y) \subset \mathcal{M}(Y)$ be the category of sheaves of finite Tor dimension. We claim that for $\mathcal{E} \in \mathcal{P}(X, f_\ast)$, we have $f_\ast(\mathcal{E}) \in \mathcal{H}(Y)$. This is local on Y, so we can assume Y is affine. Let $\{U_i\}$ be a finite open cover of X. Then the Čech complex

$$0 \to H^0(X, \mathcal{E}) \to \bigoplus_i H^0(U_i, \mathcal{E}) \to \bigoplus_{ij} H^0(U_{ij}, \mathcal{E}) \to \cdots$$

is exact (since $\mathcal{E} \in \mathcal{P}(X, f_\ast)$) and of finite length, and its terms have finite Tor dimension (since f does). This shows that $H^0(X, \mathcal{E}) = f_\ast(\mathcal{E})$ has finite Tor dimension.

Since Y admits an ample line bundle, every coherent sheaf on Y is a quotient of a vector bundle, and every sheaf in $\mathcal{H}(Y)$ admits a finite length resolution by vector bundles. Thus $K_i(\mathcal{H}(Y)) = K_i(\mathcal{P}(Y)) = K_i(Y)$. We have thus obtained our map $f_\ast : K_i(X) \to K_i(Y)$.

Proposition 2 (Projection formula). Let f be above. Then the equation

$$f_\ast(x \cdot f^\ast(y)) = f_\ast(x) \cdot y$$

holds in the following cases: (i) $x \in K_0(X)$, $y \in G_i(Y)$; (ii) $x \in K_0(X)$, $y \in K_i(Y)$; (iii) $x \in G_i(X)$, $y \in K_0(Y)$.

1.4. **Open and closed subschemes.**

Proposition 3. Let X be a noetherian scheme. Let X_{red} be the reduced subscheme of X. Then the map $f_\ast : G_i(X_{\text{red}}) \to G_i(X)$ induced by the finite map $f : X_{\text{red}} \to X$ is an isomorphism.

Proof. Every coherent sheaf on X has a finite length filtration (given by powers of the nilradical) where the graded pieces belong to $\mathcal{M}(X_{\text{red}})$.

Proposition 4. Let X be a noetherian scheme and let Z and Z' be closed subschemes with the same underlying topological space. Then there is a natural isomorphism $G_i(Z) = G_i(Z')$.

Proof. We have $Z_{\text{red}} = Z'_{\text{red}}$. Now use the previous proposition.

We can therefore define $G_i(Z)$ for a Zariski closed subspace Z of X.

Proposition 5. Let X be a noetherian scheme, let Z be a closed subscheme, and let U be its complement. Then there is a long exact sequence

$$\cdots \to G_i(Z) \to G_i(X) \to G_i(U) \to G_{i-1}(Z) \to \cdots$$

Proof. Give Z the reduced scheme structure. Let $\mathcal{M}_Z(X) \subset \mathcal{M}(X)$ be the category of sheaves supported on Z. Identify $\mathcal{M}(Z)$ with the subcategory of $\mathcal{M}(X)$ on objects killed by the ideal sheaf I_Z. Then every object of $\mathcal{M}_Z(X)$ admits a finite length filtration (by powers of I_Z) where the quotients belong to $\mathcal{M}(Z)$, and so $K_i(\mathcal{M}_Z(X)) = K_i(\mathcal{M}(Z)) = G_i(Z)$. It is a standard fact that $\mathcal{M}(U)$ is the Serre quotient $\mathcal{M}(X)/\mathcal{M}_Z(X)$. The result now follows from the localization sequence. □

1.5. Limits. Let $\{X_i\}_{i \in I}$ be a filtered inverse system of schemes where the transition maps $X_i \to X_j$ are affine. Then the inverse limit X exists as a scheme. We have the following result in this situation:

Proposition 6. The natural map $\lim_i K_q(X_i) \to K_q(X)$ is an isomorphism. If X and the X_i are noetherian and the transition maps are flat, the same is true for G_q.

Proof. We have an equivalence $\mathcal{P}(X) = \lim_i \mathcal{P}(X_i)$, and the Q-construction and π_i commute with filtered colimits. Similarly for \mathcal{M}. □

2. Homotopy invariance

2.1. Graded modules over polynomial rings. Let A be a noetherian ring, and let $B = A[t_1, \ldots, t_n]$ be the graded ring where $\deg(t_i) = 1$. Let $\mathcal{M}_{gr}(B)$ be the category of finitely generated non-negatively graded B-modules. This has a functor (-1) (shift the grading), which gives $K_i(\mathcal{M}_{gr}(B))$ the structure of a $\mathbb{Z}[t]$-module. There is an exact functor $\mathcal{M}(A) \to \mathcal{M}_{gr}(B)$ given by $M \mapsto M \otimes_A B$, which induces group homomorphism $G_i(A) \to K_i(\mathcal{M}_{gr}(B))$, and therefore a $\mathbb{Z}[t]$-module homomorphism $G_i(A) \otimes \mathbb{Z}[t] \to K_i(\mathcal{M}_{gr}(B))$.

Proposition 7. The canonical homomorphism $\psi: G_i(A) \otimes \mathbb{Z}[t] \to K_i(\mathcal{M}_{gr}(B))$ is an isomorphism.

Proof. Let $\mathcal{N} \subset \mathcal{M}_{gr}(B)$ be the category of modules M where $\text{Tor}_i^B(M, A) = 0$ for $i > 0$. The functors $\text{Tor}_i^B(-, A) = 0$ for $i > n$ (since A is the quotient of B by a regular sequence of length n), and so $K_i(\mathcal{N}) = K_i(\mathcal{M}_{gr}(B))$.

Let $\mathcal{N}_p \subset \mathcal{N}$ be the subcategory consisting of modules generated in degrees $\leq p$. There are exact functors

$$\mathcal{M}(A) \xrightarrow{a} \mathcal{N}_p \xrightarrow{b} \mathcal{M}(A)^{p+1}$$

give by

$$a(M_0, \ldots, M_p) = \bigoplus_{i=0}^p B(-i) \otimes_A M_i$$

and

$$b(N) = ((N/B_+ N)_0, \ldots, (N/B_+ N)_p).$$

Note that $N/B_+ N = N \otimes_B A$ is exact on \mathcal{N}. Clearly, $b \circ a$ is the identity functor, and thus induces the identity on K-theory.

For a graded B-module N, let $F_q N$ be the submodule generated by elements of degree $\leq q$, and let $F_{-1} N = 0$. Regarding F_q as a functor $\mathcal{N}_p \to \mathcal{N}_p$, the chain $F_0 \subset \cdots \subset F_p$
is a filtration of the identity functor \(I \). One shows that for \(N \in \mathcal{N} \), there is a canonical isomorphism
\[
F_q N / F_{q-1} N = B(-p) \otimes (N/B^+ N)_p,
\]
and so \(N \mapsto F_q N / F_{q-1} N \) is exact as well. Thus \(\sum_{p=0}^\infty (F_q / F_{q-1})_* = I_* \) induces the identity on \(K_i(\mathcal{N}_p) \). However, from the above identification, we see that \(\sum_{p=0}^\infty (F_q / F_{q-1})_* \) induces \(ab \) on \(K \)-theory. Thus \(a \) and \(b \) are isomorphisms.

Taking the limit as \(p \to \infty \), we see that the functor
\[
\mathcal{M}(A)^{\oplus \infty} \to \mathcal{N}, \quad (M_0, M_1, \ldots) \mapsto \sum_{i=0}^{\infty} B(-i) \otimes_A M_i
\]
induces an isomorphism on \(K \)-theory. But this map is exactly \(\psi \), after identifying \(K_i(\mathcal{N}) \) with \(K_i(\mathcal{M}_{gr}(B)) \).

2.2. Modules over polynomial rings. Let \(A \) be a noetherian ring. We aim to prove the following result:

Proposition 8. The functor \(M \mapsto M \otimes_A A[x] \) induces an isomorphism \(G_i(A) \to G_i(A[x]) \).

Proof. The idea is to reduce to the case of graded modules over polynomial rings. To do this, we use the following observation: an \(A[x]\)-module is the same as a \(\mathbb{G}_m \)-equivariant module on \(\mathbb{A}^2_A \setminus \mathbb{A}^1_A \), where \(\mathbb{A}^1_A \) is the \(y \)-axis in \(\mathbb{A}^2_A \). Via the localization sequence, we can understand the \(\mathbb{G}_m \)-equivariant \(K \)-theory of \(\mathbb{A}^2_A \setminus \mathbb{A}^1_A \) from that of \(\mathbb{A}^2_A \) and \(\mathbb{A}^1_A \), which is simply the \(K \)-theory of graded modules over polynomial rings over \(A \).

Let us now translate this to ring theory. We have \(\mathbb{A}^2_A = \text{Spec}(A[t, u]), \mathbb{A}^1_A = \text{Spec}(A[t]) \) and \(\mathbb{A}^2_A \setminus \mathbb{A}^1_A = \text{Spec}(A[t, u, u^{-1}]). \) We have an equivalence of categories \(\mathcal{M}_{gr}(A[t, u, u^{-1}]) = \mathcal{M}(A[x]) \), and so the localization sequence gives a long exact sequence \([\text{fix: need to use } \mathbb{Z}\text{-graded modules, not just } \mathbb{Z}_{\geq 0}\text{-graded ones. doesn’t change much}]\)
\[
\cdots \to K_i(\mathcal{M}_{gr}(A[t])) \to K_i(\mathcal{M}_{gr}(A[t, u])) \to K_i(\mathcal{M}(A[x])) \to \cdots,
\]
which translates to
\[
\cdots \to G_i(A) \otimes \mathbb{Z}[t] \to G_i(A) \otimes \mathbb{Z}[t] \to G_i(A[x]) \to \cdots,
\]
The result now follows from the following lemma. \(\square \)

Lemma 9. The following diagram commutes:
\[
\begin{array}{ccc}
K_i(\mathcal{M}_{gr}(A[t])) & \longrightarrow & K_i(\mathcal{M}_{gr}(A[t, u])) \\
\| & & \| \\
K_i(A) \otimes \mathbb{Z}[t] & \longrightarrow^{t-1} & K_i(A) \otimes \mathbb{Z}[t]
\end{array}
\]
Here the top horizontal map comes from treating \(A[t] \)-modules as \(A[t, u] \)-modules where \(u \) acts by \(0 \).

Proof. Let \(i : \mathcal{M}(A) \to \mathcal{M}_{gr}(A[t]) \) be \(i(M) = M \otimes_A A[t] \), and let \(j : \mathcal{M}(A) \to \mathcal{M}_{gr}(A[t, u]) \) be \(j(M) = M \otimes_A A[t, u] \). Tensoring the exact sequence
\[
0 \to A[t, u](-1) \to A[t, u] \to A[t] \to 0
\]
over \(A \) with \(M \), we obtain an exact sequence of functors
\[
0 \to j(-1) \to j \to i \to 0.
\]
Thus \(i = (t - 1)j \) on \(K \)-theory.

2.3. Affine bundles.

Proposition 10. Let \(X \) be a noetherian scheme and let \(f : E \to X \) be a flat map whose fibers are affine spaces. Then \(f^* : G_i(X) \to G_i(E) \) is an isomorphism.

Proof. Given \(T \to X \), we say that “the proposition holds for \(T \)” if the maps \(G_i(T) \to G_i(E_T) \) are isomorphisms for all \(i \), where \(E_T = E \times_X T \). Let \(Z \) be a closed subscheme of \(X \) with complement \(U \). We then obtain a diagram

\[
\cdots \to G_i(Z) \to G_i(X) \to G_i(U) \to \cdots
\]

\[
\cdots \to G_i(E_Z) \to G_i(E) \to G_i(E_U) \to \cdots
\]

Thus if the proposition holds for two of \(Z, U, \) or \(X \), then it holds for the third as well. By noetherian induction, we can assume that the proposition holds for \(E_Z \to Z \) for all proper closed subschemes \(Z \) of \(X \). If \(X \) is reducible, say \(X = Z_1 \cup Z_2 \), then the proposition holds for \(Z_1 \) and \(Z_2 \) and \(Z_1 \cap Z_2 \), and thus for \(X \setminus Z_1 = Z_2 \setminus (Z_1 \cap Z_2) \), and therefore for \(X \). We can therefore assume \(X \) is irreducible. Since \(G_i \) is insensitive to nilpotents, we can assume \(X \) is integral. Now take the direct limit of the above diagram over all proper closed subschemes of \(X \), to obtain a diagram

\[
\cdots \to \lim G_i(Z) \to G_i(X) \to \lim G_i(U) \to \cdots
\]

\[
\cdots \to \lim G_i(E_Z) \to G_i(E) \to \lim G_i(E_U) \to \cdots
\]

It thus suffices to show that the map

\[
(11) \quad \lim G_i(U) \to \lim G_i(E_U)
\]

is an isomorphism. We have

\[
\lim G_i(U) = G_i(\lim U) = G_i(K),
\]

where \(K \) is the function field of \(X \). Similarly,

\[
\lim G_i(E_U) = G_i(\lim E_U) = G_i(K[x_1, \ldots, x_n]).
\]

Thus (11) is an isomorphism by Proposition 8. \(\square \)

3. Filtration by codimension and the BGQ spectral sequence

3.1. Preliminaries.

If \(X \to Y \) is a map of topological spaces with homotopy fiber \(F \) then there is a long exact sequence of homotopy groups

\[
\cdots \to \pi_i(F) \to \pi_i(X) \to \pi_i(Y) \to \pi_{i-1}(F) \to \cdots
\]

If \(\mathcal{A} \) is an abelian category and \(\mathcal{B} \) is a Serre subcategory then the map \(N(Q(\mathcal{A})) \to N(Q(\mathcal{A}/\mathcal{B})) \) has homotopy fiber \(N(Q(\mathcal{B})) \), and the resulting long exact sequence is the localization sequence in \(K \)-theory.
One can think of $B \subset A$ as a 1-step filtration of A. There is a version of localization for longer filtrations, where the long exact sequence is replaced by a spectral sequence. We now explain how this works.

First, suppose that we have maps of topological spaces

$$Y = Y_n \to Y_{n-1} \to \cdots \to Y_0$$

Let $X_0 = Y_0$ and for $1 \leq i \leq n$ let X_i be the homotopy fiber of $Y_i \to Y_{i-1}$. One would like to say that there is a spectral sequence with $E_1^{p,q} = \pi_{p-q}(X_q)$ that converges to $\pi_{p-q}(Y)$. This is essentially the case, except for the fact that π_0 and π_1 cause problems (because they’re not abelian groups). However, if the Y_i’s are all H-spaces, and the maps are maps of H-spaces, then this problem goes away, and there is indeed such a spectral sequence.

Now suppose that \mathcal{A} is an abelian category and

$$0 = F^n \mathcal{A} \subset \cdots \subset F^1 \mathcal{A} \subset \mathcal{A}$$

is a decreasing filtration by Serre subcategories. For $1 \leq i \leq n$ put $B_i = F^{i-1}\mathcal{A}/F^i \mathcal{A}$, and let $B_0 = \mathcal{A}/F^0 \mathcal{A}$. For $0 \leq i \leq n$, let $Y_i = N(Q(A/F^i \mathcal{A}))$. Then for $1 \leq i \leq n$ the map $Y_i \to Y_{i-1}$ has homotopy fiber $X_i = N(Q(B_i))$, and $X_0 = Y_0 = N(Q(B_0))$. We thus have a spectral sequence with $E_1^{p,q} = \pi_{p-q}(X_q) = K_{p-q-1}(B_q)$ that converges to $\pi_{p-q}(Y) = K_{p-q-1}(\mathcal{A})$.

4. Severi–Brauer varieties and projective bundles

[to add]