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The purpose of this lecture is to prove the Serre–Tate theorem. This theorem says that
deforming an abelian variety is equivalent to deforming its p-divisible group. We will focus
on elliptic curves for simplicity, although the proof in the general case is really no more
difficult.

1. Statement of theorem

To state the theorem precisely, we introduce some notation. Let R be a ring in which N
(a power of p) vanishes, let I be an ideal such that In+1 = 0, and let R0 = R/I. Recall two
basic definitions:

• An elliptic curve over R is a pair (E,P ) where E is a proper smooth scheme over
R whose geomtric fibers are genus 1 curves, and P ∈ E(R) is a point.
• A p-divisible group over R of height h is a family G = (Gi) of finite flat group

schemes over R such that Gi has order pih and Gi is identified with the pi torsion of
Gi+1.

If E/R is an elliptic curve then we obtain a p-divisible group G of height 2 by putting
Gi = E[pi]. We denote this p-divisible group G by E[p∞].

Let E be the category of elliptic curves over R. Let G be the category of triples (E0, G, i),
where E0 is an elliptic curve over R0, G is a p-divisible group over R, and i : E[p∞]→ G0 is
an isomorphism of p-divisible groups. The theorem is then:

Theorem 1 (Serre–Tate). The functor E → G taking E to (E0, E[p∞], id) is an equivalence
of categories.

2. Some lemmas

We follow Drinfeld’s proof, as given in Katz’s article “Serre–Tate local moduli.” For an
elliptic curve E/R and an R-algebra A, let EI(A) = ker(E(A)→ E(A/IA)).

Lemma 2. The group EI(A) is killed by Nn.

Proof. Recall that if X is a local parameter for E at the origin, then the multiplication-by-N
map on E takes the form [N ](X) = NX + higher order terms. A point of GI(A) has X ∈ I,
by definition. Since NX = 0 (as N kills R), we thus see that [N ](GI(A)) ⊂ GI2(A), and
more generally, [N ](GIk(A)) ⊂ GIk+1(A). Since In+1 = 0, the result follows. �

Lemma 3. The map ψ : E(A/IA)→ E(A) defined by mapping x to Nnx̃, where x̃ ∈ E(A)
is any lift of x, is a well-defined group homomorphism.

Proof. We first note that any x ∈ E(A/IA) admits a lift x̃ ∈ E(A), since E is smooth.
Suppose that x̃′ is a second lift. Then x̃ − x̃′ ∈ EI(A), and therefore killed by Nn, and so
Nnx̃ = Nnx̃′. Thus ψ(x) is well-defined. It is clear that it is a homomorphism. �

For the next few lemmas, fix elliptic curves E and E ′ over R, and let G = E[p∞] and
G′ = E ′[p∞]. The Hom’s in the following lemma’s can be taken to mean maps of functors.

Lemma 4. The groups Hom(∗, ∗′) for ∗ ∈ {G,G0, E, E0} have no p-torsion.

Proof. This follows immediately from the fact that ∗ is p-divisible. �
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Lemma 5. The natural maps Hom(G,G′)→ Hom(G0, G
′
0) and Hom(E,E ′)→ Hom(E0, E

′
0)

are injective.

Proof. A morphism in the kernel of one of these maps would take values in E ′I . Since the
groups are p-torsion free and E ′I is killed by a power of p, the result follows. �

We now study the problem of lifting a map G0 → G′0 or a map E0 → E ′0. Note that the
previous lemma implies that any a map admits at most one lift.

Lemma 6. Let f0 : G0 → G′0 be a given map. Then Nnf0 lifts to a map g : G → G′. For
f0 to lift, it is necessary and sufficient that g(G[Nn]) = 0. The same statements hold maps
E0 → E ′0.

Proof. Take g to be to be the composition

G(A)→ G(A/IA)
f0→ G′(A/IA) ⊂ E ′(A/IA)

ψ→ E ′(A).

Note that the image must be contained in G′(A), and so g is a map G→ G′. It is clearly a lift
of Nnf0. If f0 lifts to f , then g = Nnf by the uniquness of lifts, and therefore g(G[Nn]) = 0.
Conversely, suppose that g(G[Nn]) = 0. Then g = Nnf ′ for some homomorphism f ′ : G →
G′. Note that Nnf0 = Nnf ′0, and so f0 = f ′0 since Hom(G0, E

′
0) has no p-torsion. Thus

f = f ′ is a lift of f0. The exact same proof applies to maps E0 → E ′0. �

3. Proof of the theorem

We begin by proving that the functor Φ: E → G is faithful. Suppose f : E → E ′ is a map
of elliptic curves over R such that Φ(f) = 0. Then f0 = 0, and so f = 0 by Lemma 5.

We now show that Φ is full. Thus suppose we are given elliptic curves E and E ′ over
R, a map f [p∞] : E[p∞] → E ′[p∞] of p-divisible groups, and a map f0 : E0 → E ′0 of elliptic
curves, such that f [p∞]0 and f0|E[p∞] agree. Let g : E → E ′ be the unique lift of Nnf0
provided by Lemma 6. Then g|E[p∞] is a lift of Nnf [p∞]0, and so, by uniqueness of lifts,
g|E[p∞] = Nnf [p∞]. This implies that g kills E[pn], and so g = pnf for some f : E → E ′

lifting f0. Of course, the restriction of f to E[p∞] must agree with the given f [p∞], since
the two have the same restriction to R0.

We finally show that Φ is essentially surjective. Thus let (E0, G, i) ∈ G be given. We must
produce E/R giving rise to this data. Since the moduli of elliptic curves is smooth, we can
find some deformation E ′ of E0 over R. The isomorphism E ′0 → E0 induces an isomorphism
α0 : E ′0[p

∞]→ E0[p
∞] = G0 of p-divisible groups. Let β : E ′[p∞]→ G be the unique lifting of

Nnα0 provided by Lemma 6, and let γ : G → E ′[p∞] be the unique lifting of Nnα−10 . Since
βγ and γβ both lift N2n, they are both equal to N2n by the uniqueness of lifts. Thus β is
an isogeny of p-divisible groups. The reduction of β modulo I is the composition of Nn and
an isomorphism, and therefore flat. It follows that β is flat. [Not clear on details, uses fact
that formal completion of G is flat over R, since it’s a formal Lie group]

Let K be the kernel of β. This is a closed subgroup of E ′[Nn], and so finite over R, and
flat over R since β is flat; thus K is a finite flat group scheme over R. Define E = E ′/K.
Since K0 = E ′0[N

n], E is a lift of E ′0/E
′
0[N

n] = E ′0 = E0. The exact sequence

0→ K → E ′[p∞]→ G→ 0

shows that E[p∞] is isomorphic to G. The fact that the isomorphisms are compatible is
straightforward.
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4. The canonical lift

Suppose that E/k is an ordinary elliptic curve, where k is a perfect field (e.g., algebraically
closed or finite) of characteristic p. Let R be a local artinnian ring with residue field k. By
the Serre–Tate theorem, lifting E to R is the same as lifting its p-divisible group G = E[p∞].
Now, G fits into a connected-étale sequence

0→ G◦ → G→ Get → 0.

Because E is ordinary, G◦ is dual to Get and is of multiplicative type. Because k is perfect,
this extension is canonically split, i.e., G = Get ×G◦. Now, étale groups deform uniquely to
any nilpotent thickening. The same is true for multiplicative groups, as they are Cartier dual

to étale groups. Thus there are unique lifts G̃et and G̃◦ to R. Their product G̃ = G̃et × G̃◦
is a lift of G to a group over R, and therefore corresponds, by Serre–Tate, to a lift Ẽ of E
over R. This is called the canonical lift.

The canonical lift is, as the name implies, canonical. If f : E → E ′ is a map of ordinary
elliptic curves over k, then f induces maps Get → G′et and G◦ → (G′)◦. These lift uniquely

to maps G̃et → G̃′et and G̃◦ → (G̃′)◦, and thus induce a map G̃ → G̃′. By Serre–Tate, this

corresponds to a map Ẽ → Ẽ ′ of elliptic curves over R. This lifted map is unique (Lemma 5).
We have thus shown that the reduction map

HomR(Ẽ, Ẽ ′)→ Homk(E,E
′)

is an isomorphism.
A common choice for R in the above theory is Wn(k), the nth truncation of the Witt

vectors. By taking a limit over all n, one obtains a formal lift to W (k), and this is algebraic
(as all formal curves are). Thus one obtains a canonical lift to W (k). The isomorphism on
Hom’s remains true at this level. In particular, one sees that the Frobenius morphism of E

lifts to a morphism of Ẽ over W (k), and so the generic fiber of Ẽ has complex multiplicaiton.
(Note: since E is ordinary, the Frobenius map does not belong to Z ⊂ End(E).)

5. Deligne’s theorem

I will briefly explain here one neat application of the canonical lift, given by Deligne in
“Variétés abéliennes ordinaires sur un corps fini” (his second paper). Let k be a finite field
with q elements. Fix a complex embedding i : W (k)[1/p] → C. Given an ordinary abelian

variety A/k of dimension g, one can form its canonical lift Ã/W (k), and then the base change

ÃC via i. This is an abelian variety over the complex numbers with complex multiplication.

One can then take its singular cohomology Λ = H1(Ẽ(C),Z). This is a free Z-module of
rank 2g. Furthermore, it has natural endomorphisms F coming from the Frobenius of E.

Let C be the category of triples (Λ, F ), where Λ is a free Z-module of rank 2g, and F and
V are endomorphisms of Λ such that the following conditions hold:

• F is semi-simple and its complex eigenvalues have modulus q1/2.
• Half of the eigenvalues of F are p-adic units.
• There exists an endomorphism V of Λ such that FV = q.

The above construction defines a functor

{ordinary abelian varieties over k of dimension g} → C.
Deligne’s theorem is that this is an equivalence of categories.
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6. More on ordinary elliptic curves

Using the Serre–Tate theorem, we constructed canonical lifts of ordinary elliptic curves.
However, one can go farther and give a useful description of all lifts. Let k be an algebraically
closed field and let R be a local artinian ring with residue field k. Suppose E0/k is an
ordinary elliptic curve and E/R is a lift. Let G0 = E0[p

∞] and G = E[p∞]. The group
G has a connected étale sequence, and its connected and étale parts are the unique lifts of
the corresponding parts of G0 to R. The étale part of G or G0 can be identified with the

constant étale sheaf Tp(E(k)) ⊗Qp/Zp. Let Ĝ be the formal completion of G; thus Ĝ(S),

for an R-algebra S, is the kernel of G(S)→ G(S ⊗R k). Then G0 can be identified with Ĝ.

We have a natural map ϕ̃ : Tp(E(k)) ⊗ Qp → Ĝ[p∞](R), defined as follows. Let x =
(x1, x2, . . .) be an element of Tp(E(k)). Thus xi ∈ E[pi](k) and pxi+1 = xi. Then ϕ̃(p−k ⊗ x)
is defined to be pi−kx̃i where i� 0 and x̃i is a lift of xi. Let us check that this is well-defined.

If x̃′i is a second lift then x̃i − x̃′i belongs to Ĝ(R), which is annihilated by a fixed power of
p. Thus pi−kx̃i is independent of the choice of lift if i is sufficiently large. Next, we have
pi+1−kx̃i+1 = pi−kx̃i, where x̃i = px̃i+1, and so the definition is independent of the choice of

i. Note that if k = 0 then pix̃i maps to pixi = 0 in G(k), and so ϕ̃(x) lands in G̃(R). Thus

ϕ̃ induces a map ϕ : Tp(E(k))→ Ĝ. We have a commutative diagram

0 // Ĝ // G[p∞] // Tp(E(k))⊗Qp/Zp // 0

0 // Tp(E(k))

ϕ

OO

// Tp(E(k))⊗Qp

ϕ̃

OO

// Tp(E(k))⊗Qp/Zp //

OO

0

The upper row is in fact the push-out of the lower row along the map ϕ. Thus G[p∞] is
completely determined by ϕ.

The group Ĝ is the Cartier dual of the étale group Tp(E(k)) ⊗ Qp/Zp. (For abelian
varieties, we’d use the dual abelian variety here.) Thus the Weil pairing induces a pairing

Ĝ × Tp(E(k)) → Ĝm. Given ϕ as above, this can be converted into a pairing Tp(E(k)) ×
Tp(E(k)) → Ĝm(R). Conversely, given a pairing like this, one obtains a map of group

schemes Tp(E(k))→ HomR(Tp(E(k)), Ĝm) = Ĝ.
We have thus shown that there is a bijection between isomorphism classes of lifts of E to

R and pairings Tp(E(k))× Tp(E(k))→ Gm(R). In particular, the formal deformation space

of E is canonically isomorphic to Ĝm. The identity element corresponds to the canonical
lift.


	1. Statement of theorem
	2. Some lemmas
	3. Proof of the theorem
	4. The canonical lift
	5. Deligne's theorem
	6. More on ordinary elliptic curves

