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1 Introduction

In previous lectures, we introduced modular curves over C (first constructed as quotients of the
upper half plane by congruence subgroups) and then over Q. We recall the modular interpretation
of the open modular curves Y0(N) and Y1(N) over Q (or any field k of characteristic not dividing
N): for any k-algebra R,

• R-points of Y0(N) correspond to elliptic curves E over R with a subgroup D of order N , also
defined over R; or equivalently, cyclic degree N isogenies ϕ : E → E′ of elliptic curves E and
E′ over R [where kerϕ corresponds to the subgroup D]

• R-points of Y1(N) correspond to elliptic curves E over R with an R-rational point P of order
N .

The usual notation Y0(N) and Y1(N) refer to the coarse moduli spaces of the stacks Y0(N) and
Y1(N) here, and the modular curves X0(N) and X1(N) over k are compactifications of Y0(N) and
Y1(N), respectively, where the cusps correspond to generalized elliptic curves with appropriate level
structure.

Let M1,1 denote the moduli stack of elliptic curves over Q (or k). Here, because of the restriction
on the characteristic of k, the forgetful maps Y0(N) → M1,1 and Y1(N) → M1,1 (just taking the
elliptic curve E from the modular interpretation above) are étale, so the fibers are well understood.
Because M1,1 is smooth and these maps are étale, the moduli stacks Yi(N) here are smooth, as
are the schemes Yi(N) for i = 0 or 1. (Note that the smoothness of the coarse space from the
smoothness of the stack is only automatically true in dimension 1, e.g., with a curve over a field,
and we will have to work harder in the sequel when considering the modular curve over, say, Z.)

When the characteristic of the base field divides N , however, attempting to define the modular
curves in the same way is problematic, as we will see below. Our goal for this lecture is to describe
an appropriate regular model for X0(N) over Z (see the book of [Katz-Mazur] for proofs and details;
other references include the earlier work of Deligne-Rapoport [Deligne-Rapoport] for the case N is
squarefree and the ideas of Drinfeld [Drinfeld]).

2 p-torsion in characteristic p

Let k be a field not of characteristic p and E an elliptic curve over k. Then the p-torsion E[p] of
E over the algebraic closure k is well known to be isomorphic to Z/pZ×Z/pZ as a group (because
multiplication by p has degree p2).

On the other hand, now let k be a field of characteristic p and E an elliptic curve over k.
Then E is either ordinary or supersingular. There are many equivalent definitions of these notions;
today we will use the ones relevant to p-torsion. (However, it is not easy to show that all of these
definitions are equivalent!) The elliptic curve E is ordinary if E[p](k) ∼= Z/pZ and is supersingular
if E[p](k) = 0.

To show that these are the only two options for the p-torsion of E, we introduce the Frobenius
map F and the Verschiebung map V . The naive definition of the Frobenius map for, say, a variety
S over k in An is to send a point x = (x1, . . . , xn) ∈ S to (xp1, . . . , x

p
n) ∈ S(1), which is a particular
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twist of S where the coefficients of the defining polynomials are raised to the pth power. It is not a
priori clear, however, that this is a well defined map (e.g., it may depend on the embedding of S!).
A perhaps better definition is more algebraic, as follows. If R is a k-algebra, let FrobR : R→ R be
defined by FrobR(x) = xp. Then consider the diagram below:

R

R

FrobR ,,

Frobk⊗R // R(1) := Frob∗kR

F
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k
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Frobk

// k

OO
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Here, the map labeled Frobk ⊗R is just acting as Frobk on the “coefficients” in k. By the universal
property of the tensor product, the dotted arrow exists and is unique, and that is the desired
Frobenius map F . While the map FrobR is not a k-linear map, the map F is k-linear. Note that if
R is the base change to k of an Fp-algebra, then R(1) ∼= R. By abuse of notation, we also call the
geometric version of this Frobenius map F ; we will consider F : E → E(1) for our elliptic curve E.

The Verschiebung map V is the isogeny V : E(1) → E dual to F . The compositions V ◦ F and
F ◦ V are both the multiplication-by-p maps for E and E(1), respectively, because F has degree p.
Thus, the p-torsion of E(1) is the preimage of the identity point O on E(1) under F ◦ V = p. (Note
that every elliptic curve arises as E(1) for some E by twisting by the inverse of Frobenius, which we
can do over k.)

The preimage of O under F is the fat point at O of degree p; as a subscheme, it has coordinate
ring k[x]/(xp) and we can think of it as a divisor p ·O. (Here, by abuse of notation, O refers to either
the identity point of E or E(1) as appropriate.) Moreover, the map V is degree p, so it is either
purely inseparable or separable. If the latter, it is étale (by, e.g., Riemann-Hurwitz). Thus, the
preimage of O under V is either p ·O or p distinct points over k. Therefore, as a set, the preimage
of O under the composition F ◦ V is either just the identity point O or p points; as a group, we see
that E[p](k) is either 0 or Z/pZ.

Note that E[p] does have more interesting structure as a group scheme, however. In particular,
if E is ordinary, then by the connected étale sequence, we have that E[p] is the extension of an étale
group scheme by a connected group scheme. Here, we have that the étale group scheme must be
Z/pZ (over k) and thus by Cartier duality, the connected piece is µp ∼= (Z/pZ)∨ (this is all of E[p]
because of degree considerations). We see that E[p] as a group scheme over k is an extension of Z/pZ
by µp; over a perfect field L (like k), we have Ext1(Z/pZ, µp) ∼= H1

flat(Spec L, µp)
∼= L×/(L×)p = 0.

Thus, over k, we have that E[p] is canonically isomorphic to Z/pZ×µp. If E is supersingular, note
that E[p] has no étale part from the description above, hence no µp piece either. Thus, E[p] is an
extension of αp by αp (here, αp is the kernel of Frobenius on Ga).

By purely formal arguments, the structure of E[p] for ordinary elliptic curves shows that E[p∞] ∼=
Qp/Zp × µp∞ as a ind-(group scheme) (by p-divisibility and taking an inductive limit of E[pn]).

By the above analysis of the p-torsion of elliptic curves in characteristic p, we see that the
previous modular interpretations for the modular curves Y0(N) and Y1(N) would not be correct in
characteristic p dividing N , or in particular, over Z.
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3 Drinfeld’s level structure

To remedy the issue of p-torsion not behaving in a straightforward manner in characteristic p, we use
Drinfeld’s definitions of level structure (started in [Drinfeld] and expanded in a letter by Deligne).

Let E be an elliptic curve over a ring R. (In fact, we can take any curve over R that has a
commutative group scheme structure for these definitions.)

Definition 1. For a positive integer N , we say that a point P on E(R) has exact order N if the
effective Cartier divisor

D := [P ] + [2P ] + · · ·+ [NP ]

is a subgroup of E over R.

In this definition, since D is a divisor, it is a closed subscheme of E, and if P is of exact order N ,
then D inherits the structure of an R-group scheme from E, i.e., for any R-algebra S, D(S) ⊂ E(S)
is a subgroup.

Lemma 3.1. If P ∈ E(R) has exact order N as above, then NP = 0 in E(R).

In fact, N kills the group scheme D (a result of Deligne found in [Oort-Tate]). If N is invertible
in R, then any group scheme of order N is étale; using the lemma, one can show that P has exact
order N as above if and only if the order of P ∈ E(R) is N . Note that if N = pe, then the points
P of exact order N lie in the p-divisible group of E.

Example 3.2. If R is an Fp-algebra, then the identity point O in E has exact order pe for any
positive integer e. For each pe, the subgroup corresponding to D is the kernel of F e.

Example 3.3. Let E = Gm over a field R = k of characteristic p (possibly 0). If p - N , then
an element λ ∈ Gm(k) = k× has exact order N if and only if D := [λ] + [λ2] + · · · + [λN ] is a
subgroup scheme of Gm. The only subgroup schemes of Gm are µr’s, so λ has exact order N if λ is
a primitive Nth root of unity. (Note that if λ = 1, for example, and N 6= 1, then D is the N-fold
infinitesimal neighborhood of 1, which is not a subgroup scheme of Gm.)

For simplicity, assume N = pe for a positive integer e. Note that Gm[p](k) = µp(k) = 0 because
a field of characteristic p has no nontrivial pth roots of unity. By the lemma, any λ of exact order
N = pe must have order dividing pe and thus must be 1, in which case the divisor D is µpe as a
subgroup scheme of Gm.

Example 3.4. If E is an ordinary elliptic curve over an algebraically closed field k of characteristic
p, then recall that the p-divisible group E[p∞] is isomorphic to Qp/Zp × µp∞ . So the set of points
P ∈ E(k) of exact order p are those corresponding to (a, 1) ∈ Qp/Zp × µp∞ , where a is an element
of the natural subgroup Z/pZ of Qp/Zp. More generally, the points of exact order pe correspond
to (a, 1) where a is an element of the natural subgroup Z/peZ. Observe that the identity point has
exact order pe for any positive integer e, as seen in Example 3.2.

4 Regular models for X0(p) and X1(p)

We now specialize to the case N = p to describe a regular model for the modular curves X0(p) and
X1(p) over Z.

For X1(p), we consider the moduli stack Y1(p) of elliptic curves E equipped with a point P of
exact order p (from Definition 1), or equivalently, p-isogenies ϕ : E → E′ of elliptic curves together
with a generator P in the kernel of ϕ. Note that the divisor D associated to a point P of exact
order p gives an isogeny E → E/D. Then we have:
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Theorem 4.1 ([Katz-Mazur, Chapter 5]). The stack Y1(p) over Z is finite and flat over M1,1 and
regular.

Idea of proof: The finiteness is clear, and the flatness follows from showing that Y1(p) is regular
(via the “miracle flatness” theorem). To show that this stack is regular, because the regular locus is
open and regularity only depends on the p-divisible group of the corresponding elliptic curves, it is
enough to show regularity at a single point corresponding to a supersingular elliptic curve E0 over
Fpe . Let E/W (Fpe)JtK be the universal deformation of E0. Then W (Fpe)JtK is the complete local
ring of M1,1 at E0. Its preimage in Y1(p) is of the form Spec(A) for some finite W (Fpe)JtK-algebra
A, and the pullback EA → Spec (A) is equipped with a point P ∈ EA(A) of exact order p by
definition of the moduli problem Y1(p). One then shows that T and x(P ) generate the maximal
ideal A, proving regularity.

We now consider the moduli stack Y0(p) of p-isogenies of elliptic curves ϕ : E → E′ where kerϕ
has a generator P of exact order p étale (= fppf here) locally. In fact, this stack Y0(p) is isomorphic
to [Y1(p)/(Z/pZ)×], where (Z/pZ)× acts on the point P of exact order p in kerϕ. Because Y1(p) is
finite and flat over M1,1 and regular, so is Y0(p). We can also compactify this stack to X0(p) in a
natural way (by including generalized elliptic curves and appropriate conditions on kerϕ. It is clear
that Y0(p) and X0(p) are well behaved in characteristics other than p.

To describe the geometry of Y0(p) in characteristic p (i.e., tensor everything in the next two
paragraphs with Z/pZ), we construct two distinct maps a, c : M1,1 → Y0(p). In particular, we
have a(E) = (F : E → E(1)) and c(E) = (V : E(1) → E). Note that composing a and c with
the forgetful map Y0(p)→M1,1 (sending ϕ : E → E′ to E) gives the identity map and Frobenius,
respectively. Each of these maps is a closed immersion, so we obtain two irreducible components of
Y0(p). Because Y0(p) → M1,1 has degree p + 1 (by calculating in characteristic 0, using flatness),
these two components are the only components.

These two components intersect exactly at the set of points in Y0(p) corresponding to isogenies
of supersingular elliptic curves. If E ∈ M1,1 is an ordinary elliptic curve, then a(E) and c(E) are
different points in Y0(p) because kerF is a connected group scheme and kerV is an étale group
scheme. On the other hand, if E is a supersingular elliptic curve, then so is E(1); it thus has only
one cyclic p-isogeny, so a(F (E)) = c(E).

5 Regular models for X0(N)

In this section, we simply summarize the results from [Gross-Zagier, §III.1] for more general N .
We consider the moduli stack X0(N) (or MΓ0(N)) of isogenies ϕ : E → E′ of degree N between

generalized elliptic curves E and E′ such that the group scheme kerϕ meets every irreducible
component of every geometric fiber and kerϕ has a point of exact order N étale locally. Let
X = X0(N) denote the coarse moduli scheme of X0(N). Then X ⊗ Z[1/N ] is smooth and proper
over Z[1/N ], but X ⊗ Z/pZ is singular and reducible for any prime p dividing N .

Let N = pnM with p - M . Then X ⊗ Z/pZ has n+ 1 irreducible components, denoted Fa,n−a,
where a is an integer between 0 and n; the stratification into these components is based on the group
scheme kerϕ for the points of X corresponding to ordinary elliptic curves. In particular, at the
ordinary points of the component Fa,n−a, the group scheme kerϕ is isomorphic to µpa ×Z/pn−aZ×
Z/MZ. Each component is isomorphic to X0(M) ⊗ Z/pZ and has multiplicity φ(pmin(a,n−a)) in
X ⊗ Z/pZ, where φ denotes the Euler φ function. Analogous to the case of X0(p), the components
Fa,n−a intersect at each of the points of X corresponding to ϕ : E → E′ where both E and E′ are
supersingular elliptic curves.
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The argument for X0(p) can be generalized to show that the moduli stack X0(N) is regular
over Z. Analyzing the automorphism groups (with some work) gives that the coarse moduli scheme
X over Z is regular except at the supersingular points in characteristics dividing N (unless the
automorphism group of the corresponding isogeny is just {±1}).

The cusps of X can also be analyzed combinatorially. For each positive divisor d of N , there is
one irreducible component isomorphic to Spec Z[µgcd(d,N/d)], with φ(gcd(d,N/d)) geometric points,
each corresponding to isogenies of Néron polygons with kerϕ ∼= µd × dZ/NZ. In characteristic p,
this cusp component lies on the component Fa,n−a of X where a = ordp(d).
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