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Let x be a Heegner point on X0(N), let c be the divisor (x)− (∞), and let d be the divisor
(x) − (0). We need to compute the Néron height pairing 〈c, Tmdσ〉, where Tm is a Hecke
operator and σ is an element of Gal(H/K) (K being the imaginary quadratic field and H
being its Hilbert class field). This height pairing factors as a sum of local height pairings.
The goal of this lecture is to explain the computation of the local pairing at archimedean
places.

1. Generalities on archimedean local height pairings

Let S be a compact Riemann surface. As stated in the previous lecture, there is a unique
partially defined function

〈−,−〉 : Div0(S)×Div0(S) 99K R≥0

satisfying the following conditions:

• If a, b ∈ Div0(S) have disjoint support then 〈a, b〉 is defined.
• The pairing 〈−,−〉 is biadditive, whenever this makes sense: i.e., given a, a′, b ∈

Div0(S) such that supp(b) is disjoint from supp(a) and supp(a′), we have 〈a+a′, b〉 =
〈a, b〉+ 〈a′, b〉.
• If f is a meromorphic function on S and a =

∑
nixi is a degree 0 divisor such that

supp(div(f)) and supp(a) are disjoint then

〈div(f), a〉 = 〈a, div(f)〉 =
∑
i

ni log |f(xi)|2|.

• The pairing 〈−,−〉 is continuous in each variable, i.e., for any a ∈ Div0(S) the
function

(S \ supp(a))× (S \ supp(a))→ R, (x, y) 7→ 〈(x)− (y), a〉

is continuous, and similarly with the parameters reversed.

Uniqueness of such a pairing is not difficult: the difference of two such pairings would define
a biadditve continuous everywhere-defined pairing J × J → R (where J is the Jacobian of
S), which must be zero since J is compact and R has no compact subgroups. In particular,
the pairing 〈−,−〉 is necessarily symmetric.

We now sketch the proof of existence, which is more difficult. Fix distinct points x0 and
y0 in S. For x 6= y0 and y 6= x0, define

(1) G(x, y) = 〈(x)− (x0), (y)− (y0)〉.

Then 〈−,−〉 is completely determined by G: indeed, if a =
∑
nixi and b =

∑
mjyj then

(2) 〈a, b〉 =
∑
i,j

nimjG(xi, yj).

Conversely, given a function G, we can attempt to define 〈−,−〉 using the above formula.
The following result explains what we need to be successful:
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Lemma 3. The formula (2) defines 〈−,−〉 satisfying the above conditions if and only if
for fixed x 6= y0, the function y 7→ G(x, y) on S \ {x, x0} is continuous, harmonic, and has
logarithmic singularities of residue +1 and −1 at y = x and y = x0, and similarly with the
roles of x and y reversed.

Remark 4. We say a function f on S has a logarithmic singularity at x0 of residue a if
f(x) − a log |ρ(x)|2 is continuous near x0, where ρ is holomorphic function defined near x0

and vanishing to order 1 at x0. �

Proof. Suppose G satisfies the stated conditions. Then 〈−,−〉 is well-defined, continuous,
and biadditive via (2) so long as supp(a)∪{x0} is disjoint from supp(b)∪{y0}. However, we
can extend by continuity to the more general case where supp(a) and supp(b) are disjoint.
To explain this, it suffices to show that G(x1, y) − G(x2, y) makes sense as y tends to x0.
This follows from the nature of the singularities of G: for y ≈ x0, we have

G(xi, y) = − log |ρ(y)|2 + ci +O(ρ(y)),

where ρ is holomorphic and vanishing at x0 and ci is constant. Thus G(x1, y) − G(x2, y)
tends to c1 − c2 as y tends to x0, and is therefore well-defined.

We have thus shown that 〈−,−〉 is defined where it should be, continuous, and biadditive.
We now show that it has the correct form on principal divisors. Let f be a meromorphic
function on S, and write div(f) =

∑
mjyj. Consider the function S → R defined by

x 7→ log |f(x)|2 −
∑
mjG(x, yj). First notice that this is actually well-defined on all of S.

We have already treated the case where x approaches y0. If x approaches some yj then
G(x, yj) behaves like nj log |f(x)|, but so does log |f(x)|; thus the difference is well-defined.
Furthermore, it is not difficult to show that this function is harmonic, and it is therefore
constant, say equal to c. But then if a =

∑
nixi is a degree 0 divisor with supp(a) disjoint

from supp(div(f)), we have∑
i,j

nimjG(xi, yj) =
∑
i

ni(log |f(xi)|2 − c) =
∑
i

ni log |f(xi)|2.

This shows that 〈−,−〉 assumes the right value on principal divisors.
We do not prove the converse, but note that it follows from the existence of such a G and

the uniqueness of the pairing. �

Remark 5. Given an appropriate G, one can define the height pairing via (2). However,
(1) may not hold! One always has

G(x, y) = 〈(x)− (x0), (y)− (y0)〉+ c

for some constant c. To ensure c = 0, one must assume that G(x0, y) vanishes for some
y ∈ S \ {x0}. �

2. Archimedean local height pairings on X0(N)

We now apply the preivous section to the case S = X0(N) = h∗/Γ0(N). We take x0 =∞
and y0 = 0. To construct the required function G on S, it suffices to find a function G(z, z′)
on h× h satisfying the following:

• G(γz, γ′z′) = G(z, z′) for all γ, γ′ ∈ Γ0(N).
• G(z, z′) is continuous and harmonic when z stays away from the orbit of z′.
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• G(z, z′) = ez log |z − z′|2 +O(1) as z′ → z, with z fixed, where ez is the order of the
stabilizer of z in Γ0(N). (Typically ez = 1.)
• For z fixed, G(z, z′) = 4πy′+O(1) as z′ →∞, and G(z, z′) = O(1) as z′ tends to any

other cusp.
• For z′ fixed, G(z, z′) = 4π y

N |z|2 + O(1) as z → 0, and G(z, z′) = O(1) as z tends to

any other cusp.

The appearance of ez and 4πy′ and 4π y
N |z|2 comes from the form of uniformizing parameters

on X0(N) pulled back to h.
Suppose we had a function g on h× h satisfying the following conditions

• g(γz, γz′) = g(z, z′) for all γ ∈ SL2(R).
• g(z, z′) is continuous and harmonic in each variable, as long as z 6= z′.
• g(z, z′) = log |z − z′|2 +O(1) as z′ → z.

Then we could try to define G by averaging g over Γ0(N). In fact, it’s easy to write down a
function g, namely

g(z, z′) = log

∣∣∣∣z − z′z − z′

∣∣∣∣2 .
However, the average of this over Γ0(N) does not converge.

To fix this problem, we will relax the condition that g be harmonic to ∆g = εg, where ε is
small. The SL2(R) invariance of g means that it is a function only of the hyperbolic distance

between z and z′, or equivalently, of the parameter t = 1 + |z−z′|2
2yy′

, which is the hyperbolic

cosine of this difference. We can therefore write g(z, z′) = Q(t) for some function Q. The
equation ∆g = εg turns into the equation(

(1− t2)
d2

dt2
− 2t

d

dt
+ ε

)
Q = 0

This is a Legendre equation of index s− 1, where ε = s(s− 1) with s > 1. The only solution
that does not blow-up at infinity is given by

Qs−1(t) =

∫ ∞
0

(
t+
√
t2 − 1 · coshu

)−u
du.

We put

gs(z, z
′) = −2Qs−1(t), t = 1 +

|z − z′|2

2yy′
.

One can check from this closed form that the analytic conditions we require of gs are satisfied.
Furthermore, one can use it to show that the average

Gs(z, z
′) =

∑
γ∈Γ0(N)

gs(z, γz
′)

converges. The function Gs is not harmonic in z, but satisfies

∆zGs(z, z
′) = s(s− 1)Gs(z, z

′),

and similarly for z′.
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We now want to let s → 1 to obtain a harmonic function. Of course, this will not work
exactly. It turns out that Gs has a simple pole at s = 1 of residue

κ =
−12

[Γ(1) : Γ0(N)]
= −12N−1

∏
p|N

(1 + p−1)−1.

In particular, this residue is independent of z and z′. We could try to fix Gs by simply
subtracting off κ(s− 1)−1; however, the result would not be harmonic in z because

∆z

(
Gs(z, z

′)− κ

s− 1

)
= s(s− 1)Gs(z, z

′)

tends to κ as s → 1. Instead, we should subtract from Gs(z, z
′) a function of z having the

same eigenvalue for the Laplacian and the same residue at s = 1. Such a function is given
by −4πE(z, s), where E is the Eisenstein series

E(z, s) =
∑

Γ∞\Γ0(N)

Im(γz)s.

Thus lims→1(Gs(z) + 4πE(z, s)) is harmonic in z as s → 1. However, it is not harmonic in
z′. Thus we add 4πE(z, s) to it. But now we have reintroduced a pole at s = 1, and so fix
that by subtracting off κ

s−1
! And actually, we use E(wz, s) instead of E(z, s) to put the pole

in z at the correct cusp. (Here wz = −1/Nz is the Atkin–Lehner involution.) We thus have

G(z, z′) = lim
s→1

[
Gs(z, z

′) + 4πE(−1/Nz, s) + 4πE(z′, s) +
κ

s− 1

]
.

In fact, we are allowed to add to G any constant C, as this does not change the height
pairing. We choose to add the unique C so that G(z, z′) tends to 0 as z → ∞. This is
computed explicitly in Gross–Zagier:

(6) C = κ

2− logN − 2 log 2 + 2γ − 2
ζ ′(2)

ζ(2)
+ 2

∑
p|N

p log(p)

p2 − 1

 ,
where γ is Euler’s constant. We thus have:

Proposition 7. Let x and x′ be distinct non-cuspidal points of X0(N), and let z and z′ in
h map to them. Then

〈(x)− (∞), (x′)− (0)〉 = lim
s→1

[
Gs(z, z

′) + 4πE(wz, s) + 4πE(z′, s) +
κ

s− 1

]
+ C.

3. Evaluation of the height pairing on Heegner points

3.1. Background on Heegner points. Recall that a Heegner point of X0(N) is a point
corresponding to a cyclic N -isogeny E → E ′ where E and E ′ both have CM by the full order
OK . Heegner points correspond to pairs (A, n) where A = [a] is an ideal class of K and n is
a primitve ideal of norm N (i.e., OK/n = Z/NZ). Precisely, (A, n) corresponds to the point
xA,n of X0(N) representing the isogeny (C/a → C/an−1). All Heegner points are defined
over H, the Hilbert class field of K. If σ ∈ Gal(H/K) corresponds to B under class field
theory, then σxA,n = xBA,n.
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3.2. Setup. We want to compute

〈(x)− (∞), (xσ)− (0)〉∞ =
∑
v|∞

〈(x)− (∞), (xσ)− (0)〉v

=
∑

τ∈Gal(H/K)

〈(xτ )− (∞), (xστ )− (0)〉

for a Heenger point x, where σ ∈ Gal(H/K). Suppose σ corresponds to A ∈ ClK via class
field theory. Then xτ and xστ vary over all xA1,n and xA2,n with A1A−1

2 = A. Thus the above
pairing is equal to ∑

A1A−1
2 =A

〈(xA1,n)− (∞), (xA2,n)− (0)〉.

Since n is fixed in this sum, we drop it from the notation in what follows. Appealing to
Proposition 7, we find that this is equal to

(8) lim
s→1

[
γs(A) + 4π

∑
B∈ClK

E(wτB, s) + 4π
∑
B∈ClK

E(τB, s) +
hκ

s− 1

]
+ hC,

where

γs(A) =
∑

A1A−1
2 =A

Gs(τA1 , τA2).

We will study (8) in two steps, first by looking at γs, and then considering the remaining
terms.

Remark 9. We actually want to do the computation with a Hecke operator Tm thrown into
the pairing as well. We take m = 1, so that Tm is simply the identity operator, for ease of
exposition. �

3.3. A formula for γs. Let τ and τ ′ be points in the upper half-plane corresponding to xA
and xB. Recall that

gs(τ, τ
′) = −2Qs−1

(
1 +

|τ − τ ′|2

2 Im(τ) Im(τ ′)

)
.

Given γ =

(
a b
c d

)
in Γ0(N), an elementary computation shows that

(10) gs(γτ, τ
′) = −2Qs−1

(
1 +

2nN

|D|

)
where n is a non-negative integer. As Gs is the average of gs over Γ0(N), we find

Gs(τ, τ
′) = −2

∞∑
n=1

ρ(n)Qs−1

(
1 +

2nN

|D|

)
,

where ρ(n) is the number of γ ∈ Γ0(N) giving n in the previous equation.
To get a feel for ρ(n), let us consider the simplest case where K = Q(i) and N = 1 and

τ = τ ′ = i. (In fact, Gs(τ, τ
′) = ∞ since τ = τ ′, but the coefficients ρ(n) still make sense.)

We have
|γτ − τ ′|

2 Im(τ) Im(τ ′)
= (b+ c)2 + (a− d)2,
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and so (10) holds with n = (b+ c)2 + (a− d)2 (note |D| = 4). Thus ρ(n) counts the number
of solutiosn to n = (a−d)2 + (b+ c)2 with ad− bc = 1. The second equation, in the presence
of the first, is equivalent to (a+ b) + (b− c)2 = n+ 4, and so ρ(n) roughly counts the number
of ways n and n + 4 can be written as a sum of two squares. (Roughly because there are
some mod 2 congruences involved.)

The answer in general is similar: ρ(n) counts the number of pairs of elements in certain
fractional ideals of K with given norms. By examining the particular formula and summing
it over ideal classes, one arrives at the following formula:

(11) γs(A) = −2u2

∞∑
n=1

δ(n)R{A n}(n)rA(nN + |D|)Qs−1

(
1 +

2nN

|D|

)
.

Here u is the half number of units in K, δ(n) is 2t, where t is the number of distinct primes
dividing (n,D), R{A n}(n) is the number of integral ideals of K of norm n and genus {A n},
and rA(n) is the number of integral ideals of K of norm n and class A.

3.4. The remaining terms. We now look at the remaining terms in (8). We begin with
the following lemma.

Lemma 12. We have∑
B∈ClK

E(τB, s) = N−s
∏
p|N

(1 + p−s)−1 · 2−s|D|s/2uζ(2s)−1ζK(s),

and similarly if we replace τB by wτB on the left side.

Proof. Let

E ′(z, s) =
∑
γ∈Γ(1)

Im(γz)s

be the Eisenstein series for Γ(1). Then

E(z, s) = N−s
∏
p|N

(1− p−2s)−1 ·
∑
d|N

µ(d)

ds
E ′(Nz/d, s).

We thus have∑
B∈ClK

E(τB, s) = N−s
∏
p|N

(1− p−2s)−1 ·
∑
d|N

µ(d)

ds

∑
B∈ClK

E ′(NτB/d, s).

It is not difficult to show that the inner sum on the right side is independent of d. As∑
d|N

µ(d)

ds
=
∏
p|N

(1− p−s),

we find ∑
B∈ClK

E(τB, s) = N−s
∏
p|N

(1 + p−s)−1 ·
∑
B∈ClK

E ′(τB, s).

Let

ζK(A, s) =
∑

[a]=A

1

N(a)s
,
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be the partial Dedekind zeta function, where the sum is over integral ideals a of K of class
A. Then we have the straightforward formula

E ′(τB, s) = 2−s|D|s/2uζ(2s)−1ζK(B, s),

and so ∑
B∈ClK

E(τB, s) = N−s
∏
p|N

(1 + p−s)−1 · 2−s|D|s/2uζ(2s)−1ζK(s).

It’s not hard to show the same if we replace τB with wτB. �

Applying the lemma to (8) yields

(13) lim
s→1

[
γs(A) +

8πu(2N)−s|D|s/2∏
p|N(1 + p−s)

ζK(s)

ζ(2s)
+

hκ

s− 1

]
+ hC,

We have ζK(s) = ζ(s)L(s, ε). Write

8πu(2N)−s|D|s/2∏
p|N(1 + p−s)

L(s, ε)

ζ(2s)
= c1 + c2(s− 1) +O((s− 1)2),

where

c1 =

[
8πu(2N)−s|D|s/2∏

p|N(1 + p−s)

L(s, ε)

ζ(2s)

]
s=1

and

c2 =
d

ds

[
8πu(2N)−s|D|s/2∏

p|N(1 + p−s)

L(s, ε)

ζ(2s)

]
s=1

.

We have

ζ(s) =
1

s− 1
+ γ +O(s− 1),

and so
8πu(2N)−s|D|s/2∏

p|N(1 + p−s)

ζK(s)

ζ(2s)
=

c1

s− 1
+ c1γ + c2 +O(s− 1).

From the class number formula L(1, ε) = πh/u
√
|D|, we find c1 = −2κh. Thus (13) yields

(14) lim
s→1

[
γs(A)− hκ

s− 1

]
+ c1γ + c2 + hC,

We have

c2 = c1

− log(2N) + 1
2

log |D|+
∑
p|N

log p

p+ 1
+
L′(1, ε)

L(1, ε)
− 2

ζ ′(2)

ζ(2)

 ,
and so, using (6),

c1γ + c2 + hC = κh

log(N/|D|) + 2
∑
p|N

log p

p2 − 1
+ 2

ζ ′(2)

ζ(2)
− 2

L′(1, ε)

L(1, ε)

 ,
Applying this to (14), we reach our end result:
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Proposition 15. Let x be a Heegner point, and let σ ∈ Gal(H/K) correspond to A ∈ ClK.
Then

〈(x)− (∞), (xσ)− (0)〉∞ = lim
s→1

[
γs(A)− hκ

s− 1

]

+ κh

log(N/|D|) + 2
∑
p|N

log p

p2 − 1
+ 2

ζ ′(2)

ζ(2)
− 2

L′(1, ε)

L(1, ε)

 ,
where γs(A) is given by (11).

3.5. Dealing with Hecke operators. The above work has computed 〈c, dσ〉∞. However,
we really need to compute 〈c, Tmdσ〉∞ for all Hecke operators Tm. When the divisors c and
Tmd

σ have disjoint support, this is not significantly more difficult than what we have done
above. When the supports overlap, there are additional complications, the first being that
the height pairing is not even defined. Nonetheless, one can still carry out a meaningful
calculation. However, Nekovar found a trick that shows, for the ultimate applications to
L-values, one does not need to know anything about the case where the supports overlap.
Thus what we have done is representative of the general case.
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