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1. ARITHMETIC SURFACES

Fix a Dedekind domain1 R with fraction field K, and set S = Spec(R).

Definition 1. An ARITHMETIC SURFACE over S is an integral, normal and excellent
scheme C → S that is flat and of finite type over S, whose generic fiber is a smooth
connected curve overK, and whose special fibers are (possibly reducible, nonreduced
and/or nonsmooth) curves over the corresponding residue fields.

Normality ensures that C is regular in codimension 1, that is, the singularities of
C should be “honest points”. Our assumptions imply that at most a finite number of
the special fibers could be singular. Properness ensures that all fibers are projective
curves over the residue fields.

Example 2. Let R denote the localisation of Z at a prime ideal (p). Thus,

R =
{a
b
∈ Q | p - b

}
,

and K = Q. Let C = Spec(R[x, y]/(xy − p)). This is regular in codimension one.
The generic fiber is Spec(Q[x, y]/(xy − p)), which is a nonsingular curve over Q.
The special fiber is Spec(Fp[x, y]/(xy)), which is singular at the origin. Note that the
special fiber also has two irreducible components. This surface is not proper over R.
If we had instead taken C = Proj(R[x, y, z]/(xy− pz2)), then we would have obtained
a regular and proper arithmetic surface over R.

2. WEIL DIVISORS

Let us now fix C → S a proper arithmetic surface that is regular in codimension
one. In this section we recall the theory of Weil divisors on C, cf. [1].

Definition 3. A PRIME DIVISOR on C is a closed integral subscheme of codimension
one. Let Div(C) denote the free abelian group generated by the prime divisors. Then
Div(C) is the (WEIL) DIVISOR GROUP of C, and elements of Div(C) are called (WEIL)
DIVISORS.

In this note we only deal with Weil divisors, so we’ll simply refer to them as
divisors. A divisor D is said to be EFFECTIVE if it can be expressed in the form D =∑

i niYi for integers ni ≥ 0 and prime divisors Yi.

Definition 4. Let C = Spec(Z[x]) and let R = Z, so that C is the affine line over
Z. It looks like a plane made up of all the affine lines over the possible base fields,
fibered over Spec(Z) in the obvious way. Let Y1 = Spec(Z[x]/(p)) ∼= Spec(Fp[x]) for

1That is, R is a field, or a noetherian ring such that the localisation at each maximal ideal is a DVR.
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some prime number p, and let Y2 = Spec(Z[x]/(x)) ∼= Spec(Z). These are both prime
divisors on C. The divisors Y1 is an example of a fibral divisor, while Y2 is horizontal.

Recall that an integral scheme has a unique generic point, which is a dense point
corresponding to the zero ideal in any affine open subset of the scheme. Let Y ⊆ C
be a prime divisor and let η ∈ X be the generic point of Y . Since C is regular and
Y is of codimension 1, the localisation OC,η is a regular local ring of dimension 1. In
particular, it is an integrally closed noetherian local ring of Krull dimension 1, which
is one of the equivalent conditions of being a DVR. Let K denote the function field of
C. This can be realized as the fraction field of OC,η. Thus, Y gives rise to a valuation
vY on K.2 It is known (cf. Lemma 6.1 of II.6 in [1]) that if f ∈ K× is nonzero, then
vY (f) 6= 0 for only finitely many prime divisors Y on C.
Example 5. Again take C to be the affine line over Z, where Y1 = Spec(Fp[x]), and
where Y2 = Spec(Z) ⊆ C. In this case K = Frac(Z[x]) = Q(x), and any f ∈ K× can be
written in the form f = pna(x)/b(x) where n ∈ Z and a(x) and b(x) are polynomials
over Z, each of which has at least one coefficient that is not divisible by p. The integer
n is uniquely determined by f and n = vY1(f). There is a similar description for vY2.

Definition 6. If K is the fraction field of C and f ∈ K×, then div(f) denotes the
PRINCIPAL WEIL DIVISOR defined by

div(f) =
∑

prime Y ∈Div(C)

vY (f) · Y ∈ Div(C).

Mapping nonzero rational functions to their divisors defines a homomorphism
K× → Div(C), and the DIVISOR CLASS GROUP of C, denoted Cl(C), is the cokernel of
this map. Two divisors with the same image in the class group are said to be LINEARLY
EQUIVALENT. In other words, divisors D1 and D2 are linearly equivalent if and only if
D1 −D2 = (f) for some nonzero f ∈ K×.

3. LOCAL INTERSECTION MULTIPLICITY

Let K denote the fraction field of C, let x ∈ C be a closed point, and let Y be a
prime divisor on C.
Definition 7. A LOCAL UNIFORMIZER for Y at x is a function f ∈ OC,x such that
vY (f) = 1 and vY ′(f) = 0 for all prime divisors Y ′ 6= Y with x ∈ Y ′.
Remark 8. Note that if x 6∈ Y and if f is a local uniformizer for Y at x, then vY ′(f) = 0
for all prime divisors Y ′ containing x. It follows that f is a unit in OC,x. (Proof : if
f is not a unit, Krull’s principal ideal theorem says that (f) is height one, so there’s
a minimal associated prime of (f) of height one. It defines a divisor Y ′ containing x
with vY ′(f) 6= 0.) One can show similarly the a local uniformizer is well-defined up
to a unit.

Why do local uniformizers exist? If x 6∈ Y then we’re free to take f = 1. If we
assume that C is regular, then for x ∈ Y we appeal to the fact that OC,x is a regular
local ring and thus a UFD (Auslander-Buchsbaum theorem), so that the ideal defining
Y in OC,x is principal. A generator for this ideal will be a uniformizer. Silverman gives
an argument in [4] assuming only normality, but I wasn’t able to follow it. I think
we’ll be working with regular surfaces though, so this isn’t a huge issue.
2Since C is proper and hence separated, the closed integral subscheme Y is uniquely determined by
the valuation vY .
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Definition 9. Let π : C → Spec(R) be an arithmetic surface. Let x be a closed point
of C, and let Y1 and Y2 be two prime divisors of C. Then the LOCAL INTERSECTION
MULTIPLICITY of Y1 and Y2 at x is the quantity

(Y1 · Y2)x ..= lengthOS,π(x) OC,x/(f1, f2)

where f1 and f2 denote uniformizers for Y1 and Y2, respectively, at x.

Remark 10. If x 6∈ Y1∩Y2 then at least one of f1 or f2 is a unit inOC,x and (Y1 ·Y2)x = 0.

Example 11. Again take C = Spec(Z[x]), let Y1 = Spec(Fp[x]) and let Y2 = Spec(Z[x]/(x)).
These should intersect to order 1 at the closed point (p, x) ∈ C. But note that p is a
local uniformizer for Y1 and x is a local uniformizer for Y2. We see that

(Y1 · Y2)(p,x) = lengthZ(p)
OZ[x],(p,x)/(p, x) = dimFp Fp = 1

as expected.

Example 12. Let’s try a more arithmetic example. Once again set C = Spec(Z[x]), and
let Y1 = Spec(Fp[x]) for some odd prime p. Let Y2 be the divisor defined by the prime
ideal (x2 + 1), so that Y2 = Spec(Z[x]/(x2 + 1)) = Spec(Z[i]). If p ≡ 1 (mod 4) then
x2 + 1 ≡ (x− a)(x− b) (mod p) for two distinct integers a and b. Consider the closed
point (p, x−a) ∈ C. Note that as an ideal in OC,(p,x−a), we have (p, x2+1) = (p, x−a),
since x − b is a unit in the localisation at (p, x − a) (here we use that a 6= b!). To
compute the local intersection multiplicity we use p and x2 + 1 as uniformizers and
deduce that

(Y1 · Y2)(p,x−a) = dimFp Z[x](p,x−a)/(p, x− a) = 1.

Similarly (Y1 · Y2)(p,x−b) = 1. On the other hand, if p ≡ 3 (mod 4), then (p, x2 + 1) is a
closed point of C. We deduce that

(Y1 · Y2)(p,x2+1) = dimFp Z[x](p,x2+1)/(p, x
2 + 1) = 2,

since Z[x](p,x2+1)/(p, x
2 + 1) ∼= Z[i]/(p) ∼= Fp2.

4. GLOBAL INTERSECTION MULTIPLICITY

We’d like to define a global intersection multiplicity on an arithmetic surface by
adding up the local multiplicities. But we’d also like the result to have nice proper-
ties (e.g. multiplicites should only depend on linear equivalence classes of divisors).
It turns out that since our base schemes are arithmetic and not projective, such a
definition will not produce a theory with nice properties.

Example 13. This is example 7.2 of Chapter IV of [4]. Let R denote the localisation
of Z at a prime number p, and let C = Proj(R[x, y]) denote the projective line over R.
Let Y1 denote the zero locus of x, and let Y2 denote the zero locus of x+ pny for some
integer n ≥ 1. These divisors only intersect at the closed point P defined by x = 0 on
the special fiber P1

Fp
of P1

R. To compute the multiplicity, we may use the affine chart
y = 1 near P , and we deduce that

(Y1, Y2)P = lengthZ(p)
Z[x](x,p)/(x, x+ pn) = lengthZ(p)

Z/(pn) = n.

But note that x+pny
y

is an element of the fraction field of K of R. Set Y3 = Y2 +

div
(
x+pny
y

)
. Then Y3 is the zero locus of y, and hence it has no intersection with

Y1. We’ve changed the intersection multiplicity by changing a divisor within a linear
equivalence class!



4 CAMERON FRANC

Rather than sacrifice having our intersection theory be independent of linear
equivalence class representatives,3 one can instead restrict the divisors on which the
intersection multiplicity is defined. In order to explain this, let us set S = Spec(R)
and fix a closed point s of S. Let k denote the residue field of s and as usual let K
denote the fraction field of R. If C → S is a proper and regular arithmetic surface,
then a Weil divisor will be called FIBRAL over s if it is contained in the fiber Cs of C
over s ∈ S. Let Divs(C) denote the subgroup of Div(C) generated by the fibral prime
divisors over s.

The fibral divisors are rather simple, in a certain sense. They are curves on C
restricted to a single fiber, which is itself a curve. Thus, Divs(C) is the free group on
the irreducible components of the curve Cs → Spec(k).

The main theorem that we wish to state is as follows.

Theorem 14. Let C → S be a proper arithmetic surface that is regular in codimension
1, where S is Dedekind and s ∈ S is a closed point. Then there exists a unique bilinear
pairing

Div(C)×Divs(C)→ Z

denoted (Y, Z) 7→ (Y · Z) that is characterized by the following two properties:
(1) if Y and Z are distinct prime divisors, then

(Y · Z) =
∑

x∈Y ∩Z

(Y · Z)x;

(2) If Y1, Y2 ∈ Div(C) are linearly equivalent and Z ∈ Divs(C), then (Y1 · Z) =
(Y2 · Z).

Furthermore, this pairing satisfies the following symmetry property: if Y and Z are both
fibral over s, then (Y · Z) = (Z · Y ).

Proof. See [2] or Theorem 1.12 of Chapter 9 in [3]. �

Example 15. Let p be an odd prime and let R denote the localisation of Z at p.
Let C = Proj(R[x, y, z]/(xy − pz2). The special fiber is the reducible curve Cp =
Proj(Fp[x, y, z]/(xy)) which is the union of the x and y axes over Fp. Let X be the
prime fibral divisor which is the x-axis, and let Y be the prime fibral divisor which is
the y-axis. One computes that (Y · Z) = 1, as expected, using (1) of the theorem. On
the other hand, the sum X + Y is the principal divisor defined by the function p, as
X + Y is the whole fiber over p. It follows that (X ·X) = −(Y ·X) = −1.

Remark 16. In general, one can show that if Y is a fibral divisor, then (Y · Y ) ≤ 0.
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3Being able to change representatives is useful for computing self-intersections.


