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1. Introduction

Our goal is to give an introduction to modular forms and to discuss the role of Hecke
operators in the theory. We will focus on the parts of the theory that we will need in
studying [GZ86]. For more details, one can refer to [DI95].

Recall the following topics from Jeff’s talks:

• The Atkin-Lehner involution Wk is an involution on the modular curve Y0(N) =
h/Γ0(N) and permute the cusps.
• Eisenstein series...
• A Heegner point is a point in the modular curve Y0(N) = h/Γ0(N) corresponding

to N -isogenous elliptic curves E,E′ with CM by the same order O.

In this talk, we will begin by introducing modular forms. We will then define the
Hecke algebra1 together with its action on the following objects: the space of weight-k
modular forms with respect to Γ0(N) and (divisors of) the modular curve Y0(N). The
moduli space interpretation of Y0(N) allows us then interpret the latter action as a modular
correspondence—themth Hecke operator T (m) will take a pair (E,C) consisting of an elliptic
curve E and a cyclic order-N subgroup C ⊂ E to the average over pairs (E/D,C +D/D)
where D ⊂ E is a cyclic order-m subgroup with C ∩D = ∅. In particular, we will see that
T (m) acts on the set of divisors of Y0(N) supported on the Heegner points.

Remark. Later on this semester, we will need to prove that for a Heegner point c, the power
series ∑

n≥1

〈c, Tnc〉 qn

is a modular form. We will see that the Hecke algebra T acts on the space of weight-
2 cusp forms S2(Γ) for Γ = Γ0(N) and on the Jacobian Jac(X0(N)). Thus we have
maps ϕ1 : T → End(S2(Γ)) and ϕ2 : T → End(Jac(X0(N))). The map Tn 7→ 〈c, Tnc〉
gives a ring homomorphism ϕ2(T) → C. It turns out that this map also defines a ring
homomorphism ϕ1(T)→ C. By the discussion in Section 4, we see that this then implies
that

∑
n≥1〈c, Tnc〉 qn is indeed a modular form. ♦

2. Modular forms

The subgroup GL+
2 (R) ⊂ GL2(R) consisting of positive-determinant matrices acts on

the upper-half plane h via Möbius transformations. That is, for γ =
(
a b
c d

)
∈ GL+

2 (R) and
z ∈ h,

γ · z :=
az + b

cz + d
.

1The Hecke algebra TN that we will define acts on the space of weight-k cusp forms Sk(Γ), giving a map
TN → End(Sk(Γ)). Sometimes (though not in this talk) we will also call the image of TN the Hecke algebra.
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For any k ∈ Z, we can define a GL+
2 (R)-action on the space of functions f : h→ C. This

action is given by γ · f := f |[γ]k , where

f |[γ]k(z) := det(γ)k−1(cz + d)−kf(γ · z).

What we are interested in is the study of the action of certain subgroups Γ ⊂ GL+
2 (R) on

certain functions f : h→ C.

2.1. Modular forms and cusp forms. Consider the following subgroups of SL2(Z):

Γ(N) = {γ ∈ SL2(Z) : γ ≡ ( 1 0
0 1 ) mod N}

Γ1(N) = {γ ∈ SL2(Z) : γ ≡ ( 1 ∗
0 1 ) mod N}

Γ0(N) = {γ ∈ SL2(Z) : γ ≡ ( ∗ ∗0 ∗ ) mod N}
A subgroup Γ ⊂ SL2(Z) is a congruence subgroup if there exists some N ∈ N for which
Γ contains Γ(N). For example, for any N ∈ N, the subgroups Γ1(N) and Γ0(N) are
congruence subgroups.

Definition 1. A modular form of weight k ∈ Z≥0 with respect to a congruence subgroup
Γ is a function f : h→ C satisfying

(i) f is holomorphic on h
(ii) f = f |[γ]k for all γ ∈ Γ

(iii) f is holomorphic at the cusps

The space of modular forms of weight k with respect to Γ is denoted Mk(Γ).

Definition 2. A cusp form of weight k ∈ Z≥0 with respect to a congruence subgroup Γ is
function f ∈Mk(Γ) that vanishes at the cusps. The subspace of cusp forms in Mk(Γ) is
denoted Sk(Γ).

Remark. We elaborate on Definition 1(iii) and Definition 2. Fix a non-negative integer k
and a congruence subgroup Γ. Suppose f : h→ C satisfies f = f |[γ]k for all γ ∈ Γ. Then
for some h > 0, we have f(z) = f(z + h) for all z ∈ h. (This holds since there exists some
h > 0 such that

(
1 h
0 1

)
∈ Γ.) Thus f has a Fourier expansion at ∞ given by

f(z) =
∞∑

n=−∞
anq

n
h , where qh = e2πiz/h.

We say that f is holomorphic (resp. vanishes) at ∞ if an = 0 for n < 0.
Since α · f := f |[α]k defines an action, then for any α ∈ SL2(Z) and any γ ∈ α−1Γα, we

have f |[α]k |[γ]k = f |[α]k . Thus f |[α]k also has a Fourier expansion at ∞ and we can talk
about f |[α]k being holomorphic (resp. vanishing) at ∞.

We say f is holomorphic (resp. vanishes) at the cusps if f |[α]k is holomorphic at ∞ for
all α ∈ SL2(Z). ♦

Remark. Suppose k = 0. If f ∈ M0(Γ), then f can be viewed as a holomorphic function
from a compact space to C. If f is nonconstant, the image of f must be a compact open
subset of C. This is a contradiction and we see that M0(Γ) = C and S0(Γ) = {0}. ♦
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Proposition 3. The space Mk(Γ) is finite-dimensional.

From this point forward, we will set Γ := Γ0(N) and N will always refer to the level of Γ.
We will also set Y := Y0(N).

3. The Hecke algebra and two actions

Consider

∆ := ∆0(N) = {α ∈M2(Z) : det(α) > 0, α ≡ ( ∗ ∗0 ∗ ) mod N, (a(α), N) = 1}

Now let R(Γ,∆) denote the Z-module generated by the double cosets ΓαΓ for α ∈ ∆.
(If α, α′ ∈ ∆ are such that ΓαΓ = Γα′Γ, we consider these to be the same element in
R(Γ,∆).) One can endow R(Γ,∆) with a multiplication structure by studying the coset
decompositions ΓαΓ = tiΓαi. (See, for example, [DI95].) Equipped with this multiplication
law, R(Γ,∆) is an associative, commutative ring with identity (namely Γ = Γ · 1 · Γ).

3.1. Two actions. The Hecke ring R(Γ,∆) acts on Mk(Γ) and Pic(Y ) via the following
rule. For α ∈ ∆, write ΓαΓ = tiΓαi and define

f |[ΓαΓ]k =
∑
i

f |[αi]k for f ∈Mk(Γ),

(ΓαΓ) · x =
∑
i

αi · z for z ∈ h/Γ.

This defines an action of R(Γ,∆) on Mk(Γ) and Pic(Y ). Notice that Sk(Γ) is stable under
this action. Later, we will see that the set of divisors supported on Heegner points is stable
under this Hecke action. These actions can be made very explicit and will ultimately allow
us to understand:

(i) the relationship between the Fourier coefficients of f and eigenvalues for certain
elements of R(Γ,∆) called Hecke operators

(ii) Hecke operators on N -isogenous elliptic curves as averages over isogenies

We will discuss (i) in Section 4 and (ii) in Section 5.
Let ∆n = {α ∈ ∆ : detα = n} and define the Hecke operator Tm := T (m) as

Tm := T (m) :=
∑

α∈∆m,
ΓαΓ distinct

ΓαΓ.

It turns out that R(Γ,∆) is the polynomial ring TN over Z generated by T (p) = Γ
(

1 0
0 p

)
Γ

and T (p, p) := Γ
(
p 0
0 p

)
Γ for all primes p. We will also be interested in the subring

T(N) ⊂ TN generated by T (p) and T (p, p) for all primes p not dividing N .
The following lemma is very useful in explicitly studying Hecke operators.
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Lemma 4 (Shimura). For every m ∈ N, we have

∆m =
⊔
a

⊔
b

Γ
(
a b
0 d

)
where the disjoint union is over a > 0 coprime to N with ad = m and over b (mod d).

4. Hecke operators on modular forms

4.1. Fourier coefficients and Hecke eigenvalues. By Lemma 4, for f ∈Mk(Γ),

f |T (m)k(z) := nk−1
∑
a

d−1∑
b=0

d−kf

(
az + b

d

)
(a > 0, ad = m). (1)

Now let
∑

n≥0 cnq
n be the q-expansion of f ∈ Mk(Γ) and let

∑
n≥0 dnq

n be the q-

expansion of f |T (m)k . We wish to compute dn using Equation (1).

Let q = e2πiz/h. Then

f |T (m)k(z) = mk−1
∑
a

d−1∑
b=0

d−kf

(
az + b

d

)

= mk−1
∑
a

(m
a

)−k m/a−1∑
b=0

∑
n≥0

cne
2πiab
mh qna

2/m.

Collecting coefficients of qn, it follows that

dn = mk−1
∑

a|(m,n)

(m
a

)−k m/a−1∑
b=0

cnm/a2e
2πiab
mh

= mk−1
∑

a|(m,n)

(m
a

)−k+1
cnm/a2

=
∑

a|(m,n)

ak−1cnm/a2 . (2)

Remark. The computation of Equation (2) was very elementary, but it already tells us
something about the relationship between Hecke operators and the Fourier coefficients of
modular forms. Suppose that f ∈ Mk(Γ) is an eigenform {T (m)}m∈S for some subset
S ⊂ N. If λm is the T (m)-eigenvalue for f , and the q-expansion of f is

∑
n≥0 cnq

n, then

Equation (2) implies

λmc1 = d1 =
∑

a|(m,1)

ak−1cm/a2 = cm.

In particular, if f ∈Mk(Γ) is an eigenform for {T (m)}m∈N. Then the T (m)-eigenvalues of
f determine f up to scaling. ♦
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4.2. Old and new subspaces. For d,M such that dM divides N , the action of ιd =
(
d 0
0 1

)
defines an injective map

ι∗d,M,N : Sk(Γ)→ Sk(Γ), f 7→ f |[ιd]k .

Explicitly, f |[ιd]k(z) = dk−1f(dz). (Note that the image of ι∗d,M,N is in Sk(Γ) since ι−1
d Γιd

contains Γ.)
We define the old subspace Sk(Γ)old to be the span of all possible images of Sk(Γ)old via

ι∗d,M,N . We then define the new subspace Sk(Γ)new to be the orthogonal complement of

Sk(Γ)old with respect to the Petersson inner product

〈−,−〉 : Sk(Γ)× Sk(Γ)→ C

defined as

〈f, g〉 :=
1

[PSL2(Z) : Γ/{±1}]

∫
D
f(z)g(z)yk

dx dy

y2
,

where D is a fundamental domain for Γ = Γ0(N).
Note that ι∗d,M,N commutes with the action of T (p) if p - N . In particular, this implies

that if f ∈ Sk(Γ) is a T(N)-eigenform, then ιd,M,N (f) ∈ Sk(Γ) is again a T(N)-eigenform

with the same T(N)-eigenvalues.

Theorem 5 (Multiplicity One). Let f, g ∈ Sk(Γ) be T(ND)-eigenforms with the same
eigencharacters. If f ∈ Sk(Γ)new is normalized, then g is a scalar multiple of g.

Fact 6. Sk(Γ)new has a basis consisting of T(N)-eigenforms.

Theorem 5 together with Fact 6 imply

Corollary 7. The subspace Sk(Γ) is the orthogonal sum of T(ND)-eigenspaces. Furthermore,

a T(ND)-eigenspace V is in the new subspace if and only if dimV = 1.

Note that this corollary implies that Sk(Γ)new is stable under the action of TN and that

each new T(ND)-eigenspace is in fact a TN -eigenspace. Any form in this space is called a
newform and the one whose first Fourier coefficient is 1 is the normalized new form.

5. Hecke operators as modular correspondences

By Lemma 4, if (p,N) = 1, then for τ ∈ h,

Tp(Γτ) =
∑
γ

Γγ(τ),

where the sum ranges over γ ∈
{(

1 0
0 p

)
,
(

1 1
0 p

)
, . . . ,

(
1 p−1
0 p

)
,
(
p 0
0 1

)}
. Recall that the action

of γ on τ ∈ h is given by Möbius transformations. Equivalently, for x ∈ Y ,

Tp(x) =
∑
γ

γ · x,

where the sum ranges over γ in the same set as before.
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Remark. Here is a small example that foreshadows the next discussion. For τ ∈ h, we have(
1 1
0 p

)
·τ = (τ+1)/p, which corresponds to the elliptic curve C/〈1, (τ+1)/p〉 = (C/〈1, τ〉)/D,

where D is the order-p subgroup of C/〈1, τ〉 generated by (τ + 1)/p. Viewing τ in the
quotient h/Γ0(N) = Y , the moduli interpretation of Y allows us to associate to τ the pair
(E,C), where E = C/〈1, τ〉 and C ⊂ E is a cyclic subgroup of order N . Then

(
1 1
0 p

)
· τ ∈ Y

corresponds to the pair (E/D, (C +D)/D). ♦

Using the moduli space interpretation of Y = Y0(N), we know that a point x ∈ Y
corresponds to an N -isogeny E → E′ of elliptic curves. Equivalently, x ∈ Y corresponds to
a pair (E,C) where C ⊂ E is a cyclic group of order N . Then

Tp(E,C) =
∑
D

(E/D, (C +D)/D)

where the sum ranges over order-p subgroups D ⊂ E.
In general, for any n ∈ N,

Tn(E,C) =
∑
D

(E/D, (C +D)/D),

where the sum ranges over cyclic order-n subgroups D ⊂ E such that C ∩D = 0.

Remark. If (E,C) is a Heegner point, then E and E/C have CM by the same order O.
Then E/D and E/(C + D) have CM by the same order. To show this, one can use the
discriminant criterion for a Heegner point that Jeff discussed in the previous talk. ♦

Remark. The correspondence given by Tp can also be described in the following way. A
point in Y0(Np) is a pair (E,C) where C ⊂ E is a cyclic subgroup of order Np. Then we
can define maps

α : Y0(Np)→ Y0(N) (E,C) 7→ (E,CN ),

β : Y0(Np)→ Y0(N) (E,C) 7→ (E/Cp, C/Cp),

where Cp, CN ⊂ C is the subgroup of order p,N , respectively. This gives a diagram

Y0(Np)

Y0(N) Y0(N)

α β

Then the Hecke operator Tp on Div(Y0(N)) is the composition Tp = α ◦ tβ, where tβ sends
a point x ∈ Y0(N) to the formal sum over its preimages in Y0(Np). ♦
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