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1. Complex multiplication

Some elliptic curves have extra endomorphisms. They are said to have complex
multiplication. They require a lattice Λ = Z[1, τ ] where τ belongs to an imaginary
quadratic field K = Q(

√
−d) with d squarefree and positive. Whenever τ ∈ K, then

Λ is a fractional ideal of an order in K. Recall that an order is a subring of the ring

of integers O ⊆ K of the form Of = Z
[
1, ∆+

√
D

2

]
where ∆ = df 2 for some integer

f ≥ 1. We can compute O from τ . To see this, suppose that τ satisfies an equation
Ax2 + Bx + C = 0 where gcd(A,B,C) = 1 with A > 0. The discriminant of this
quadratic equation is B2 − 4AC = ∆ = −df 2 < 0.

Let ω ∈ Of . Then this acts on Λτ by multiplication, and thus multiplication by
ω gives an self-isogeny φ of E = C/Λτ for τ ∈ K with complex multiplication by the
order Of . Note that kerφ = ω−1Λτ is equal to a finite number of cosets of Λτ in the
larger lattice ω−1Λτ .

Theorem 1. The endomorphism ring R of an elliptic curve Eτ/C is described as
follows:

(1) if τ ∈ K for K/Q an imaginary quadratic field (the CM case), then R is an
order of K;

(2) otherwise R is Z, where endomorphisms are given by multiplication by integers.

Proof. We claim that R = {α ∈ C | αΛ ⊆ Λ} where E = C/Λ. This is a special case
of the lemma:

Lemma 2. The set of isogenies C/Λ → C/Λ′ is equal to the set of α ∈ C such that
αΛ ⊆ Λ′.

Proof. Given such an isogeny φ, there exists a lifting φ̃ : C → C making the obvious
diagram commute. We will conclude that φ̃(z) = αz for some α ∈ C×. Then necessarily

φ̃(Λ) ⊆ Λ′ and we’re done.

Noet that the construction of the lifting φ̃ can be done locally and if λ ∈ Λ then
φ̃(z+ λ)− φ̃(z) must be constant. Therefore φ̃′(z+ λ)− φ̃′(z) = 0 for all z ∈ C. Hence

φ̃ is doubly periodic and bounded, hence φ̃′ is constant, and thus φ̃(z) = αz + β for

some α, β ∈ C. But then since we specify that φ̃(0) = 0 we must have β = 0. �

Returning to the proof of the theorem, we apply the lemma to the endomorphism
φ : C/Λ → C/Λ. We may assume that Λ = Z[1, τ ] and by the lemma φ lifts to

φ̃(z) = αz for some α ∈ C× with αΛ ⊆ Λ. We’d like to classify such α. In order
to have αΛ ⊆ Λ we must have α · 1 ∈ Λ and α · τ ∈ Λ. Hence α = m1 + m2τ and
ατ = n1 + n2τ for m1,m2, n1, n2 ∈ Z. It follows that m2τ

2 + (m1 − n2)τ − n1 = 0.
In the first case, if m2 6= 0 then τ is in an imaginary quadratic field – this is the

CM case.
Let τ satisfy Aτ 2 + Bτ + C = 0 for integers A, B, C with A 6= 0. Recall

that τ ∈ H so that τ is necessarily a quadratic irrationality. Hence the discriminant
∆ = B2 − 4AC = −df 2 < 0 satisfies ∆ ≡ B2 (mod 4), hence ∆ ≡ 0 or 1 (mod 4). We
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claim that End(C/Λτ ) = O∆ = Z + fO(−d) where O(−d) is the maximal order in the

fraction field of O∆. You can plug in α = f −d+
√
−d

2
and check that αΛτ ⊆ Λτ .

On the other hand, if τ is not in any imaginary quadratic field, then the only
admissible endomorphisms are given by multiplication by integers. �

Theorem 3. The set of homothety equivalence classes C/Λτ , i.e. of elliptic curve
isomorphism classes over C, that have CM by a fixed order O∆ is finite. The size of
this set is equal to the class number |Pic(O∆)|, which is equal to the set of equivalence
classes of integer binary quadratic forms Ax2 +Bxy +Cy2 of discriminant ∆ < 0 that
are primitive, meaning gcd(A,B,C) = 1.

Proof. See Chapter 1 Section 12 of Neukirch’s book on algebraic number theory for
details about nonmaximal orders. We’ll only care about CM points by the full ring of
integers. �

Remark 4. It is important to note that the lattice parameterization of elliptic curves
C/Λτ → Eτ is an transcendental parameterization. Consider the CM case where our
lattice is Λ = aZ[1, τ ] for some quadratic imaginary number τ defining an imaginary
quadratic field K/Q. Then

g2(Λ) = 60
∑

ω∈Λ\{0}

ω−4, g3(Λ) = 140
∑

ω∈Λ\{0}

ω6.

The value g3(Λ) is 0 (for example observe that g3(Λ) = i6g3(Λ)), but g2(Λ) is a tran-
scendental number.

2. More facts on Γ0(N) and X0(N)

Lemma 5. One has [Γ0(1) : Γ0(N)] = |SL2(Z/NZ)|
Nφ(N)

and

|SL2(Z/NZ)| =
∏
pej ||N

|SL2(Z/pejZ)|

Theorem 6. The number of cusps for H /Γ0(N) is given by the formula

ε∞(Γ0(N)) =
∑
d|N

φ(gcd(d,N/d)).

In particular, if N is squarefree then this is 2ω(N) where ω(N) denotes the number of
prime factors of N .

Since −I ∈ Γ0(N), all cusps for H /Γ0(N) are regular. All of this meterial can be
found in section 3.8 of Diamond-Shurman. Note that the ramification degrees of the
cusps could vary with the cusps, as Γ0(N) is not a normal subgroup of SL2(Z).

Theorem 7. The number of elliptic points for Γ0(N) (that is, the points over i and

ρ = −1+
√
−3

2
) are given by the formulae

ε2(Γ0(N)) =

{∏
p|N

(
1 +

(
−1
p

))
4 - N,

0 otherwise,

ε3(Γ0(N)) =

{∏
p|N

(
1 +

(
−3
p

))
9 - N,

0 otherwise.
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3. X0(N) and elliptic curves

Theorem 8. Points on Y0(N) = H /Γ0(N) are equal to equivalence classes of cyclic
isogenies of elliptic curves of order N .

Remark 9. The cusps of X0(N) don’t correspond to such equivalence classes.

Example 10. Let N = p be a prime number. Then Γ0(p) is of index p+ 1 in Γ0(1). In
particular if N = 2 then the index is 3. Let A and B be matrices in Γ0(1) representing
the nontrivial cosets. Then given τ ∈ H, the three points τ , Aτ , Bτ correspond to
distinct points on Y0(p) (assuming τ not elliptic). They thus correspond to cyclic
isogenies, one for each of the three 2-division points on Eτ . Make A, B explicit and
work out exactly what division points they correspond with.

4. Heegner points

These are points on Y0(N) corresponding to pairs of N -isogenous elliptic curves
with CM by the same order (not just two orders with the same fraction field). There
are only finitely many points in H /Γ0(N) that have CM by a fixed order O∆. Some of
these will be Heegner points and some will not.

Lemma 11 (Birch). A point ω is a Heegner point for X0(N) if it satisfies an equation
(NA′)ω2 + Bω + C with gcd(NA′, B, C) = 1 and gcd(A′, B,NC) = 1. Then ∆ω =
B2 − 4NA′C and thus ∆ω ≡ B2 (mod 4N). In this case ω̃ = WN(ω) will satisfy
NC ′(ω̃)2 −Bω̃ + A′ = 0.

5. Modular forms

The function field of X0(N) is generated by the modular functions j(τ) and j(Nτ).
They thus satisfy an algebraic equation. This has integer coefficients and is called
the modular equation. It was quite an industry for computing these equations, which
typically contain huge integer coefficients.


