Gross–Zagier reading seminar Lecture 3 • Jeff Lagarias • September 23, 2014 Notes by Cameron Franc

Notes: these notes were live texed and have not been edited.

1. Complex multiplication

Some elliptic curves have extra endomorphisms. They are said to have *complex* multiplication. They require a lattice $\Lambda = \mathbb{Z}[1,\tau]$ where τ belongs to an imaginary quadratic field $K = \mathbb{Q}(\sqrt{-d})$ with d squarefree and positive. Whenever $\tau \in K$, then Λ is a fractional ideal of an order in K. Recall that an order is a subring of the ring of integers $\mathcal{O} \subseteq K$ of the form $\mathcal{O}_f = \mathbb{Z}\left[1, \frac{\Delta + \sqrt{D}}{2}\right]$ where $\Delta = df^2$ for some integer $f \geq 1$. We can compute \mathcal{O} from τ . To see this, suppose that τ satisfies an equation $Ax^2 + Bx + C = 0$ where gcd(A, B, C) = 1 with A > 0. The discriminant of this quadratic equation is $B^2 - 4AC = \Delta = -df^2 < 0$.

Let $\omega \in \mathcal{O}_f$. Then this acts on Λ_{τ} by multiplication, and thus multiplication by ω gives an self-isogeny ϕ of $E = \mathbf{C}/\Lambda_{\tau}$ for $\tau \in K$ with complex multiplication by the order \mathcal{O}_f . Note that ker $\phi = \omega^{-1}\Lambda_{\tau}$ is equal to a finite number of cosets of Λ_{τ} in the larger lattice $\omega^{-1}\Lambda_{\tau}$.

Theorem 1. The endomorphism ring R of an elliptic curve E_{τ}/\mathbf{C} is described as follows:

- (1) if $\tau \in K$ for K/\mathbf{Q} an imaginary quadratic field (the CM case), then R is an order of K;
- (2) otherwise R is \mathbf{Z} , where endomorphisms are given by multiplication by integers.

Proof. We claim that $R = \{ \alpha \in \mathbf{C} \mid \alpha \Lambda \subseteq \Lambda \}$ where $E = \mathbf{C}/\Lambda$. This is a special case of the lemma:

Lemma 2. The set of isogenies $\mathbf{C}/\Lambda \to \mathbf{C}/\Lambda'$ is equal to the set of $\alpha \in \mathbf{C}$ such that $\alpha \Lambda \subseteq \Lambda'$.

Proof. Given such an isogeny ϕ , there exists a lifting $\tilde{\phi} \colon \mathbf{C} \to \mathbf{C}$ making the obvious diagram commute. We will conclude that $\tilde{\phi}(z) = \alpha z$ for some $\alpha \in \mathbf{C}^{\times}$. Then necessarily $\tilde{\phi}(\Lambda) \subseteq \Lambda'$ and we're done.

Note that the construction of the lifting $\tilde{\phi}$ can be done locally and if $\lambda \in \Lambda$ then $\tilde{\phi}(z+\lambda) - \tilde{\phi}(z)$ must be constant. Therefore $\tilde{\phi}'(z+\lambda) - \tilde{\phi}'(z) = 0$ for all $z \in \mathbf{C}$. Hence $\tilde{\phi}$ is doubly periodic and bounded, hence $\tilde{\phi}'$ is constant, and thus $\tilde{\phi}(z) = \alpha z + \beta$ for some $\alpha, \beta \in \mathbf{C}$. But then since we specify that $\tilde{\phi}(0) = 0$ we must have $\beta = 0$. \Box

Returning to the proof of the theorem, we apply the lemma to the endomorphism $\phi \colon \mathbf{C}/\Lambda \to \mathbf{C}/\Lambda$. We may assume that $\Lambda = \mathbf{Z}[1,\tau]$ and by the lemma ϕ lifts to $\tilde{\phi}(z) = \alpha z$ for some $\alpha \in \mathbf{C}^{\times}$ with $\alpha \Lambda \subseteq \Lambda$. We'd like to classify such α . In order to have $\alpha \Lambda \subseteq \Lambda$ we must have $\alpha \cdot 1 \in \Lambda$ and $\alpha \cdot \tau \in \Lambda$. Hence $\alpha = m_1 + m_2 \tau$ and $\alpha \tau = n_1 + n_2 \tau$ for $m_1, m_2, n_1, n_2 \in \mathbf{Z}$. It follows that $m_2 \tau^2 + (m_1 - n_2)\tau - n_1 = 0$.

In the first case, if $m_2 \neq 0$ then τ is in an imaginary quadratic field – this is the CM case.

Let τ satisfy $A\tau^2 + B\tau + C = 0$ for integers A, B, C with $A \neq 0$. Recall that $\tau \in \mathcal{H}$ so that τ is necessarily a quadratic irrationality. Hence the discriminant $\Delta = B^2 - 4AC = -df^2 < 0$ satisfies $\Delta \equiv B^2 \pmod{4}$, hence $\Delta \equiv 0$ or 1 (mod 4). We

claim that $\operatorname{End}(\mathbf{C}/\Lambda_{\tau}) = \mathcal{O}_{\Delta} = \mathbf{Z} + f\mathcal{O}_{(-d)}$ where $\mathcal{O}_{(-d)}$ is the maximal order in the fraction field of \mathcal{O}_{Δ} . You can plug in $\alpha = f \frac{-d + \sqrt{-d}}{2}$ and check that $\alpha \Lambda_{\tau} \subseteq \Lambda_{\tau}$.

On the other hand, if τ is not in any imaginary quadratic field, then the only admissible endomorphisms are given by multiplication by integers.

Theorem 3. The set of homothety equivalence classes $\mathbf{C}/\Lambda_{\tau}$, i.e. of elliptic curve isomorphism classes over \mathbf{C} , that have CM by a fixed order \mathcal{O}_{Δ} is finite. The size of this set is equal to the class number $|\operatorname{Pic}(\mathcal{O}_{\Delta})|$, which is equal to the set of equivalence classes of integer binary quadratic forms $Ax^2 + Bxy + Cy^2$ of discriminant $\Delta < 0$ that are primitive, meaning $\operatorname{gcd}(A, B, C) = 1$.

Proof. See Chapter 1 Section 12 of Neukirch's book on algebraic number theory for details about nonmaximal orders. We'll only care about CM points by the full ring of integers. \Box

Remark 4. It is important to note that the lattice parameterization of elliptic curves $\mathbf{C}/\Lambda_{\tau} \to E_{\tau}$ is an transcendental parameterization. Consider the CM case where our lattice is $\Lambda = a\mathbf{Z}[1,\tau]$ for some quadratic imaginary number τ defining an imaginary quadratic field K/\mathbf{Q} . Then

$$g_2(\Lambda) = 60 \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-4}, \qquad g_3(\Lambda) = 140 \sum_{\omega \in \Lambda \setminus \{0\}} \omega^6.$$

The value $g_3(\Lambda)$ is 0 (for example observe that $g_3(\Lambda) = i^6 g_3(\Lambda)$), but $g_2(\Lambda)$ is a transcendental number.

2. More facts on
$$\Gamma_0(N)$$
 and $X_0(N)$

Lemma 5. One has $[\Gamma_0(1) \colon \Gamma_0(N)] = \frac{|\mathrm{SL}_2(\mathbf{Z}/N\mathbf{Z})|}{N\phi(N)}$ and

$$|\mathrm{SL}_2(\mathbf{Z}/N\mathbf{Z})| = \prod_{p^{e_j}||N} |\mathrm{SL}_2(\mathbf{Z}/p^{e_j}\mathbf{Z})|$$

Theorem 6. The number of cusps for $\mathcal{H}/\Gamma_0(N)$ is given by the formula

$$\varepsilon_{\infty}(\Gamma_0(N)) = \sum_{d|N} \phi(\gcd(d, N/d)).$$

In particular, if N is squarefree then this is $2^{\omega(N)}$ where $\omega(N)$ denotes the number of prime factors of N.

Since $-I \in \Gamma_0(N)$, all cusps for $\mathcal{H}/\Gamma_0(N)$ are *regular*. All of this meterial can be found in section 3.8 of Diamond-Shurman. Note that the ramification degrees of the cusps could vary with the cusps, as $\Gamma_0(N)$ is *not* a normal subgroup of $SL_2(\mathbb{Z})$.

Theorem 7. The number of elliptic points for $\Gamma_0(N)$ (that is, the points over *i* and $\rho = \frac{-1+\sqrt{-3}}{2}$) are given by the formulae

$$\begin{split} \varepsilon_{2}(\Gamma_{0}(N)) &= \begin{cases} \prod_{p \mid N} \left(1 + \left(\frac{-1}{p} \right) \right) & 4 \nmid N, \\ 0 & otherwise, \end{cases} \\ \varepsilon_{3}(\Gamma_{0}(N)) &= \begin{cases} \prod_{p \mid N} \left(1 + \left(\frac{-3}{p} \right) \right) & 9 \nmid N, \\ 0 & otherwise. \end{cases} \end{split}$$

3. $X_0(N)$ AND ELLIPTIC CURVES

Theorem 8. Points on $Y_0(N) = \mathcal{H} / \Gamma_0(N)$ are equal to equivalence classes of cyclic isogenies of elliptic curves of order N.

Remark 9. The cusps of $X_0(N)$ don't correspond to such equivalence classes.

Example 10. Let N = p be a prime number. Then $\Gamma_0(p)$ is of index p+1 in $\Gamma_0(1)$. In particular if N = 2 then the index is 3. Let A and B be matrices in $\Gamma_0(1)$ representing the nontrivial cosets. Then given $\tau \in \mathcal{H}$, the three points τ , $A\tau$, $B\tau$ correspond to distinct points on $Y_0(p)$ (assuming τ not elliptic). They thus correspond to cyclic isogenies, one for each of the three 2-division points on E_{τ} . Make A, B explicit and work out exactly what division points they correspond with.

4. Heegner points

These are points on $Y_0(N)$ corresponding to pairs of N-isogenous elliptic curves with CM by the same order (not just two orders with the same fraction field). There are only finitely many points in $\mathcal{H}/\Gamma_0(N)$ that have CM by a fixed order \mathcal{O}_{Δ} . Some of these will be Heegner points and some will not.

Lemma 11 (Birch). A point ω is a Heegner point for $X_0(N)$ if it satisfies an equation $(NA')\omega^2 + B\omega + C$ with gcd(NA', B, C) = 1 and gcd(A', B, NC) = 1. Then $\Delta_{\omega} = B^2 - 4NA'C$ and thus $\Delta_{\omega} \equiv B^2 \pmod{4N}$. In this case $\tilde{\omega} = W_N(\omega)$ will satisfy $NC'(\tilde{\omega})^2 - B\tilde{\omega} + A' = 0$.

5. Modular forms

The function field of $X_0(N)$ is generated by the modular functions $j(\tau)$ and $j(N\tau)$. They thus satisfy an algebraic equation. This has integer coefficients and is called the *modular equation*. It was quite an industry for computing these equations, which typically contain huge integer coefficients.