Gross—Zagier reading seminar

Lecture 2 o Jeff Lagarias @ September 16, 2014
Notes by Cameron Franc

Notes: these notes were live texed and have not been edited.

1. LATTICES AND ELLIPTIC CURVES

1.1. Weierstrass parameterization. Complex elliptic curve correspond with com-
plex tori C/A where A = Z[w;, ws] is a two-dimensional lattice with a basis [wy,ws]. To
explain this, set 7 = wy/wy and assume I(7) > 0 (that is, we’ve chosen an orientation
for the lattice A). Set ¢ = €2™7, so that |¢| < 1 when 7 is in the upper half plane H.
There is a correspondence C/A — E,, where E, is the elliptic curve defined by the
(affine) equation y? = 423 — go(A)x — g3(A), where

A) =60 w™ g3(A) =140 w™®
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There is an explicit parameterization given by y = ©'(2), © = (z), where p(z) = pa(2)
denotes the Weierstrass g-function
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associated to A.

1.2. Homothety of lattices. Lattices can be rescaled by nonzero complex scalars.
If A = Z[w,wo] is a lattice and @ € C* then aA = Z[aw;, aw,]. The quantity
T = wy/w; € H is the invariant of homothety classes of (oriented) lattices. There is
a (surjective but not injective) map from homothety classes of lattices to isomorphism
classes of elliptic curves over C defined as follows: note that gao(aA) = a~*go(A) and
g3(aA) = a7%g3(A). So we must check that the elliptic curves y?> = 23 — goxr — g3
and y? = 23 — goa~*r — gsa~% are isomorphic over C. In projective coordinates an
isomorphism is given by
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(x:y:2)m (z:ya ' za?).

Theorem 1. This map induces a bijection

Homothety\{Z[w1,ws] | wa/wy € H}/SLa(Z) 4 {E/C elliptic curve}/isomorphism
Proof. Let M = ( Z Z ), which acts on lattices by

Z[wl, wg] - M — Z[aw1 + cwa, bw1 + dWQ]
Get this to work with the FLT action on H; add details. O

2. THE MODULAR CURVES X(NN)

Let Yy(1) = SLy(Z)\H = I'(1), which is the open modular curve of level one.
Add picture of usual fundamental domain. Explain how S and T identify the edges.

Jeff: “this thing is an orbifold — yuck!”
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We will be interested in the subgroups

FO(N):{<Z 2) €SLo(Z) | c=0 (mod N)},
D(N) = {M €SLy(Z) [ M=1 (mod N)}.

The groups I'(N) are called the principal congruence subgroups. They are the kernel
of the group homomorphism SLy(Z) — SLy(F,) given by reduction mod p, and so
they are normal subgroups. The index of I'(N) in T'(1) is N°J[,x(1 —p~?). Any
subgroup between some I'(IV) and I'(1) is called a congruence subgroup. Thus T'y(N) is
a congruence subgroup. It is not normal in I'(1). For example,

((1) ‘Ol)ro(zv)<_01 é):rO(N)::{(Z 2>€SL2(Z)|bEO (modN)}.

Define the open modular curve Yy(IN) = I'o(IV)\ H of level N, and the compacti-
fied curve Xy(N) is obtained by adjoining the cusps to Yy(IV).

Theorem 2 (Lehner). For prime p one has [I'(1): To(p)] = p+ 1. The genus of Xo(p)
is
p+1l 1

12 403
where vy is the number of solutions of m* +1 = 0 (mod p) and vy is the number of
solutions of m®> —m — 1 = 0 (mod p). In particular, Xo(p) is of genus O exactly for
p=2,3,5,7,13.

The curve Xy(p) is an elliptic curve for a finite set of primes including 11.

Remark 3. The surface Xo(N) has a lot of endomorphisms. For example, if m divides
N and satisfies ged(m, N/m) = 1, then the Atkin-Lehner involution at m corresponds
to the fractional linear transformation

1 ma b
Wm(7—> - ﬁ ( Ne¢ md ) T,
where a,b,c,d € Z are chosen so that m?ad — Nbc = m. It is a fact that Xy(NV) is

invariant under W,, for p | N, as the matrices defining these involutions normalize
[o(N).

Remark 4. The curve Xo(V) is also invariant under 7 +— —7.

3. ISOGENIES
An isogeny is a nonzero holomorphic homomorphism between complex tori C/A.

Example 5. Multiplication by a nonzero integer defines an isogeny of a complex tori
with itself. Let A, = Z[1, 7] for 7 € H, and set £, = C/A,. The kernel of multiplication
by N (regarded as an endomorphism [N] of the abelian group FE.) is given by

ker[N]_{a+bT

Example 6. A cyclic isogeny of order N is an isogeny ¢: E — E’ with kernel a cyclic
subgroup of order N. For example, take A; = Z[1,7] and Ay = Z[1, N7|, and let ¢ be
multiplication by N, which defines a map from F; = C/A; to Ey = C/As. The kernel
of ¢ is {0,1/N,2/N,...,(N — 1)/N}, a cyclic group of order N. Thus ¢ is a cyclic
isogeny of order V.

|a,b—0,1,2,...,N—1}.



Example 7. Dual cyclic isogeny from Ay = Z[1, N7| to A3 = Z[N, N7| = A;.
4. COMPLEX MULTIPLICATION

Some elliptic curves have extra endomorphisms. They are said to have complex
multiplication. They require a lattice A = Z[1,7] where 7 belongs to an imaginary
quadratic field K = Q(v/—d) with d squarefree and positive. Whenever 7 € K, then
A is a fractional ideal of an order in K. Recall that an order is a subring of the ring

of integers O C K of the form O; = Z [1, A%m} where A = df? for some integer

f > 1. We can compute O from 7. To see this, suppose that 7 satisfies an equation
Ax? + Bz + C = 0 where gcd(A, B,C) = 1 with A > 0. The discriminant of this
quadratic equation is B2 — 4AC = A = —df? < 0.

Let w € Oy. Then this acts on A, by multiplication, and thus multiplication by
w gives an self-isogeny ¢ of E = C/A, for 7 € K with complex multiplication by the
order 0. Note that ker ¢ = w™'A; is equal to a finite number of cosets of A, in the
larger lattice w™tA,.

Theorem 8. The endomorphism ring of an elliptic curve E./C is described as follows:

(1) if T € K for K/Q an imaginary quadratic field (the CM case), then the endo-
moprhism ring is an order of K;

(2) otherwise it’s Z, where endomorphisms are given by multiplication by integers.



