Gross–Zagier reading seminar
Lecture 2 • Jeff Lagarias • September 16, 2014
Notes by Cameron Franc

Notes: these notes were live texed and have not been edited.

1. LATTICES AND ELLIPTIC CURVES

1.1. Weierstrass parameterization. Complex elliptic curve correspond with complex tori \(\mathbb{C}/\Lambda \) where \(\Lambda = \mathbb{Z}[\omega_1, \omega_2] \) is a two-dimensional lattice with a basis \([\omega_1, \omega_2]\). To explain this, set \(\tau = \omega_2/\omega_1 \) and assume \(\Im(\tau) > 0 \) (that is, we’ve chosen an orientation for the lattice \(\Lambda \)). Set \(q = e^{2\pi i \tau} \), so that \(|q| < 1 \) when \(\tau \) is in the upper half plane \(\mathcal{H} \).

There is a correspondence \(\mathbb{C}/\Lambda \to E_\Lambda \), where \(E_\Lambda \) is the elliptic curve defined by the (affine) equation \(y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda) \), where

\[
g_2(\Lambda) = 60 \sum_{\omega \in \Lambda, \omega \neq 0} \omega^{-4}, \quad g_3(\Lambda) = 140 \sum_{\omega \in \Lambda, \omega \neq 0} \omega^{-6}.
\]

There is an explicit parameterization given by \(y = \wp'(z), \ x = \wp(z) \), where \(\wp(z) = \wp_{\Lambda}(z) \) denotes the Weierstrass \(\wp \)-function associated to \(\Lambda \).

1.2. Homothety of lattices. Lattices can be rescaled by nonzero complex scalars. If \(\Lambda = \mathbb{Z}[\omega_1, \omega_2] \) is a lattice and \(\alpha \in \mathbb{C}^\times \) then \(\alpha \Lambda := \mathbb{Z}[\alpha \omega_1, \alpha \omega_2] \). The quantity \(\tau = \omega_2/\omega_1 \in \mathcal{H} \) is the invariant of homothety classes of (oriented) lattices. There is a (surjective but not injective) map from homothety classes of lattices to isomorphism classes of elliptic curves over \(\mathbb{C} \) defined as follows: note that \(g_2(\alpha \Lambda) = \alpha^{-4}g_2(\Lambda) \) and \(g_3(\alpha \Lambda) = \alpha^{-6}g_3(\Lambda) \). So we must check that the elliptic curves \(y^2 = x^3 - g_2(\Lambda)x - g_3(\Lambda) \) and \(y^2 = x^3 - g_2 \alpha^{-4}x - g_3 \alpha^{-6} \) are isomorphic over \(\mathbb{C} \). In projective coordinates an isomorphism is given by

\[
(x : y : z) \mapsto (x : y\alpha^{-1} : z\alpha^2).
\]

Theorem 1. This map induces a bijection

\[
\text{Homothety}\{\mathbb{Z}[\omega_1, \omega_2] \mid \omega_2/\omega_1 \in \mathcal{H}\}/\text{SL}_2(\mathbb{Z}) \xrightarrow{\phi} \{\text{E/\mathbb{C} elliptic curve}\}/\text{isomorphism}
\]

Proof. Let \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), which acts on lattices by

\[
\mathbb{Z}[\omega_1, \omega_2] \cdot M \mapsto \mathbb{Z}[a\omega_1 + c\omega_2, b\omega_1 + d\omega_2]
\]

Get this to work with the FLT action on \(\mathcal{H} \); add details.

\[\square\]

2. THE MODULAR CURVES \(X_0(N) \)

Let \(Y_0(1) = \text{SL}_2(\mathbb{Z}) \backslash \mathcal{H} = \Gamma(1) \), which is the open modular curve of level one. Add picture of usual fundamental domain. Explain how \(S \) and \(T \) identify the edges. Jeff: “this thing is an orbifold — yuck!”
We will be interested in the subgroups
\[\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}, \]
\[\Gamma(N) = \{ M \in \text{SL}_2(\mathbb{Z}) \mid M \equiv 1 \pmod{N} \}. \]
The groups \(\Gamma(N) \) are called the \textit{principal congruence subgroups}. They are the kernel of the group homomorphism \(\text{SL}_2(\mathbb{Z}) \rightarrow \text{SL}_2(\mathbb{F}_p) \) given by reduction mod \(p \), and so they are normal subgroups. The index of \(\Gamma(N) \) in \(\Gamma(1) \) is \(N^2 \prod_{p \mid N} (1 - p^{-2}) \). Any subgroup between some \(\Gamma(N) \) and \(\Gamma(1) \) is called a \textit{congruence subgroup}. Thus \(\Gamma_0(N) \) is a congruence subgroup. It is not normal in \(\Gamma(1) \). For example,
\[
\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Gamma_0(N) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid b \equiv 0 \pmod{N} \right\}.
\]

Define the open modular curve \(Y_0(N) = \Gamma_0(N) \setminus \mathcal{H} \) of level \(N \), and the compactified curve \(X_0(N) \) is obtained by adjoining the \textit{cusps} to \(Y_0(N) \).

Theorem 2 (Lehner). For prime \(p \) one has \([\Gamma(1): \Gamma_0(p)] = p + 1 \). The genus of \(X_0(p) \) is
\[
g = \frac{p + 1}{12} - \frac{\nu_1}{4} - \frac{\nu_2}{3},
\]
where \(\nu_1 \) is the number of solutions of \(m^2 + 1 \equiv 0 \pmod{p} \) and \(\nu_2 \) is the number of solutions of \(m^2 - m - 1 \equiv 0 \pmod{p} \). In particular, \(X_0(p) \) is of genus 0 exactly for \(p = 2, 3, 5, 7, 13 \).

The curve \(X_0(p) \) is an elliptic curve for a finite set of primes including 11.

Remark 3. The surface \(X_0(N) \) has a lot of endomorphisms. For example, if \(m \) divides \(N \) and satisfies \(\gcd(m, N/m) = 1 \), then the Atkin-Lehner involution at \(m \) corresponds to the fractional linear transformation
\[
W_m(\tau) = \frac{1}{\sqrt{m}} \begin{pmatrix} ma & b \\ Nc & md \end{pmatrix} \tau,
\]
where \(a, b, c, d \in \mathbb{Z} \) are chosen so that \(m^2 ad - Nbc = m \). It is a fact that \(X_0(N) \) is invariant under \(W_m \) for \(p \mid N \), as the matrices defining these involutions normalize \(\Gamma_0(N) \).

Remark 4. The curve \(X_0(N) \) is also invariant under \(\tau \mapsto -\bar{\tau} \).

3. ISOGENIES

An \textit{isogeny} is a nonzero holomorphic homomorphism between complex tori \(\mathbb{C}/\Lambda \).

Example 5. Multiplication by a nonzero integer defines an isogeny of a complex tori with itself. Let \(\Lambda_\tau = \mathbb{Z}[1, \tau] \) for \(\tau \in \mathcal{H} \), and set \(E_{\tau} = \mathbb{C}/\Lambda_\tau \). The kernel of multiplication by \(N \) (regarded as an endomorphism \([N] \) of the abelian group \(E_\tau \)) is given by
\[
\ker[N] = \left\{ \frac{a + b\tau}{N} \mid a, b = 0, 1, 2, \ldots, N - 1 \right\}.
\]

Example 6. A cyclic isogeny of order \(N \) is an isogeny \(\phi: E \rightarrow E' \) with kernel a cyclic subgroup of order \(N \). For example, take \(\Lambda_1 = \mathbb{Z}[1, \tau] \) and \(\Lambda_2 = \mathbb{Z}[1, N\tau] \), and let \(\phi \) be multiplication by \(N \), which defines a map from \(E_1 = \mathbb{C}/\Lambda_1 \) to \(E_2 = \mathbb{C}/\Lambda_2 \). The kernel of \(\phi \) is \(\{0, 1/N, 2/N, \ldots, (N - 1)/N\} \), a cyclic group of order \(N \). Thus \(\phi \) is a cyclic isogeny of order \(N \).
Example 7. Dual cyclic isogeny from $\Lambda_2 = \mathbb{Z}[1, N\tau]$ to $\Lambda_3 = \mathbb{Z}[N, N\tau] \cong \Lambda_1$.

4. Complex multiplication

Some elliptic curves have extra endomorphisms. They are said to have complex multiplication. They require a lattice $\Lambda = \mathbb{Z}[1, \tau]$ where τ belongs to an imaginary quadratic field $K = \mathbb{Q}(\sqrt{-d})$ with d squarefree and positive. Whenever $\tau \in K$, then Λ is a fractional ideal of an order in K. Recall that an order is a subring of the ring of integers $\mathcal{O} \subseteq K$ of the form $\mathcal{O}_f = \mathbb{Z} \left[1, \frac{\Delta + \sqrt{D}}{2}\right]$ where $\Delta = df^2$ for some integer $f \geq 1$. We can compute \mathcal{O} from τ. To see this, suppose that τ satisfies an equation $Ax^2 + Bx + C = 0$ where $\gcd(A, B, C) = 1$ with $A > 0$. The discriminant of this quadratic equation is $B^2 - 4AC = \Delta = -df^2 < 0$.

Let $\omega \in \mathcal{O}_f$. Then this acts on Λ_τ by multiplication, and thus multiplication by ω gives an self-isogeny ϕ of $E = \mathbb{C}/\Lambda_\tau$ for $\tau \in K$ with complex multiplication by the order \mathcal{O}_f. Note that $\ker \phi = \omega^{-1}\Lambda_\tau$ is equal to a finite number of cosets of Λ_τ in the larger lattice $\omega^{-1}\Lambda_\tau$.

Theorem 8. The endomorphism ring of an elliptic curve E_τ/\mathbb{C} is described as follows:

1. if $\tau \in K$ for K/\mathbb{Q} an imaginary quadratic field (the CM case), then the endomorphism ring is an order of K;
2. otherwise it’s \mathbb{Z}, where endomorphisms are given by multiplication by integers.