Gross–Zagier reading seminar Lecture 2 • Jeff Lagarias • September 16, 2014 Notes by Cameron Franc

Notes: these notes were live texed and have not been edited.

1. LATTICES AND ELLIPTIC CURVES

1.1. Weierstrass parameterization. Complex elliptic curve correspond with complex tori \mathbf{C}/Λ where $\Lambda = \mathbf{Z}[\omega_1, \omega_2]$ is a two-dimensional lattice with a basis $[\omega_1, \omega_2]$. To explain this, set $\tau = \omega_2/\omega_1$ and assume $\Im(\tau) > 0$ (that is, we've chosen an *orientation* for the lattice Λ). Set $q = e^{2\pi i \tau}$, so that |q| < 1 when τ is in the upper half plane \mathcal{H} . There is a correspondence $\mathbf{C}/\Lambda \to E_\Lambda$, where E_Λ is the elliptic curve defined by the (affine) equation $y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda)$, where

$$g_2(\Lambda) = 60 \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \omega^{-4}, \qquad g_3(\Lambda) = 140 \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \omega^{-6}.$$

There is an explicit parameterization given by $y = \wp'(z)$, $x = \wp(z)$, where $\wp(z) = \wp_{\Lambda}(z)$ denotes the Weierstrass \wp -function

$$\wp(z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left(\frac{1}{(z+\lambda)^2} - \frac{1}{\lambda^2} \right)$$

associated to Λ .

1.2. Homothety of lattices. Lattices can be rescaled by nonzero complex scalars. If $\Lambda = \mathbf{Z}[\omega_1, \omega_2]$ is a lattice and $\alpha \in \mathbf{C}^{\times}$ then $\alpha \Lambda := \mathbf{Z}[\alpha \omega_1, \alpha \omega_2]$. The quantity $\tau = \omega_2/\omega_1 \in \mathcal{H}$ is the invariant of homothety classes of (oriented) lattices. There is a (surjective but not injective) map from homothety classes of lattices to isomorphism classes of elliptic curves over \mathbf{C} defined as follows: note that $g_2(\alpha \Lambda) = \alpha^{-4}g_2(\Lambda)$ and $g_3(\alpha \Lambda) = \alpha^{-6}g_3(\Lambda)$. So we must check that the elliptic curves $y^2 = x^3 - g_2 x - g_3$ and $y^2 = x^3 - g_2 \alpha^{-4}x - g_3 \alpha^{-6}$ are isomorphic over \mathbf{C} . In projective coordinates an isomorphism is given by

$$(x:y:z) \mapsto (x:y\alpha^{-1}:z\alpha^2)$$

Theorem 1. This map induces a bijection

 $Homothety \setminus \{ \mathbf{Z}[\omega_1, \omega_2] \mid \omega_2/\omega_1 \in \mathcal{H} \} / \operatorname{SL}_2(\mathbf{Z}) \xrightarrow{\phi} \{ E/\mathbf{C} \text{ elliptic curve} \} / isomorphism$ $Proof. \text{ Let } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ which acts on lattices by}$ $\mathbf{Z}[\omega_1, \omega_2] \cdot M \mapsto \mathbf{Z}[a\omega_1 + c\omega_2, b\omega_1 + d\omega_2]$

Get this to work with the FLT action on \mathcal{H} ; add details.

2. The modular curves $X_0(N)$

Let $Y_0(1) = \operatorname{SL}_2(\mathbb{Z}) \setminus \mathcal{H} = \Gamma(1)$, which is the open modular curve of level one. Add picture of usual fundamental domain. Explain how *S* and *T* identify the edges. Jeff: "this thing is an orbifold — yuck!" We will be interested in the subgroups

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid c \equiv 0 \pmod{N} \right\},\$$

$$\Gamma(N) = \left\{ M \in \operatorname{SL}_2(\mathbf{Z}) \mid M \equiv 1 \pmod{N} \right\}.$$

The groups $\Gamma(N)$ are called the *principal congruence subgroups*. They are the kernel of the group homomorphism $\operatorname{SL}_2(\mathbf{Z}) \to \operatorname{SL}_2(\mathbf{F}_p)$ given by reduction mod p, and so they are normal subgroups. The index of $\Gamma(N)$ in $\Gamma(1)$ is $N^3 \prod_{p|N} (1-p^{-2})$. Any subgroup between some $\Gamma(N)$ and $\Gamma(1)$ is called a *congruence subgroup*. Thus $\Gamma_0(N)$ is a congruence subgroup. It is not normal in $\Gamma(1)$. For example,

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Gamma_0(N) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \Gamma^0(N) \coloneqq \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid b \equiv 0 \pmod{N} \right\}.$$

Define the open modular curve $Y_0(N) = \Gamma_0(N) \setminus \mathcal{H}$ of level N, and the compactified curve $X_0(N)$ is obtained by adjoining the *cusps* to $Y_0(N)$.

Theorem 2 (Lehner). For prime p one has $[\Gamma(1): \Gamma_0(p)] = p + 1$. The genus of $X_0(p)$ is

$$g = \frac{p+1}{12} - \frac{\nu_1}{4} - \frac{\nu_2}{3}$$

where ν_1 is the number of solutions of $m^2 + 1 \equiv 0 \pmod{p}$ and ν_2 is the number of solutions of $m^2 - m - 1 \equiv 0 \pmod{p}$. In particular, $X_0(p)$ is of genus 0 exactly for p = 2, 3, 5, 7, 13.

The curve $X_0(p)$ is an elliptic curve for a finite set of primes including 11.

Remark 3. The surface $X_0(N)$ has a lot of endomorphisms. For example, if m divides N and satisfies gcd(m, N/m) = 1, then the Atkin-Lehner involution at m corresponds to the fractional linear transformation

$$W_m(\tau) = \frac{1}{\sqrt{m}} \left(\begin{array}{cc} ma & b \\ Nc & md \end{array} \right) \tau,$$

where $a, b, c, d \in \mathbb{Z}$ are chosen so that $m^2ad - Nbc = m$. It is a fact that $X_0(N)$ is invariant under W_m for $p \mid N$, as the matrices defining these involutions normalize $\Gamma_0(N)$.

Remark 4. The curve $X_0(N)$ is also invariant under $\tau \mapsto -\bar{\tau}$.

3. Isogenies

An *isogeny* is a nonzero holomorphic homomorphism between complex tori \mathbf{C}/Λ .

Example 5. Multiplication by a nonzero integer defines an isogeny of a complex tori with itself. Let $\Lambda_{\tau} = \mathbf{Z}[1,\tau]$ for $\tau \in \mathcal{H}$, and set $E_{\tau} = \mathbf{C}/\Lambda_{\tau}$. The kernel of multiplication by N (regarded as an endomorphism [N] of the abelian group E_{τ}) is given by

$$\ker[N] = \left\{ \frac{a+b\tau}{N} \mid a, b = 0, 1, 2, \dots, N-1 \right\}.$$

Example 6. A cyclic isogeny of order N is an isogeny $\phi: E \to E'$ with kernel a cyclic subgroup of order N. For example, take $\Lambda_1 = \mathbb{Z}[1, \tau]$ and $\Lambda_2 = \mathbb{Z}[1, N\tau]$, and let ϕ be multiplication by N, which defines a map from $E_1 = \mathbb{C}/\Lambda_1$ to $E_2 = \mathbb{C}/\Lambda_2$. The kernel of ϕ is $\{0, 1/N, 2/N, \dots, (N-1)/N\}$, a cyclic group of order N. Thus ϕ is a cyclic isogeny of order N.

Example 7. Dual cyclic isogeny from $\Lambda_2 = \mathbf{Z}[1, N\tau]$ to $\Lambda_3 = \mathbf{Z}[N, N\tau] \cong \Lambda_1$.

4. Complex multiplication

Some elliptic curves have extra endomorphisms. They are said to have *complex* multiplication. They require a lattice $\Lambda = \mathbb{Z}[1,\tau]$ where τ belongs to an imaginary quadratic field $K = \mathbb{Q}(\sqrt{-d})$ with d squarefree and positive. Whenever $\tau \in K$, then Λ is a fractional ideal of an order in K. Recall that an order is a subring of the ring of integers $\mathcal{O} \subseteq K$ of the form $\mathcal{O}_f = \mathbb{Z}\left[1, \frac{\Delta + \sqrt{D}}{2}\right]$ where $\Delta = df^2$ for some integer $f \geq 1$. We can compute \mathcal{O} from τ . To see this, suppose that τ satisfies an equation $Ax^2 + Bx + C = 0$ where gcd(A, B, C) = 1 with A > 0. The discriminant of this quadratic equation is $B^2 - 4AC = \Delta = -df^2 < 0$.

Let $\omega \in \mathcal{O}_f$. Then this acts on Λ_{τ} by multiplication, and thus multiplication by ω gives an self-isogeny ϕ of $E = \mathbf{C}/\Lambda_{\tau}$ for $\tau \in K$ with complex multiplication by the order \mathcal{O}_f . Note that ker $\phi = \omega^{-1}\Lambda_{\tau}$ is equal to a finite number of cosets of Λ_{τ} in the larger lattice $\omega^{-1}\Lambda_{\tau}$.

Theorem 8. The endomorphism ring of an elliptic curve E_{τ}/\mathbf{C} is described as follows:

- (1) if $\tau \in K$ for K/\mathbf{Q} an imaginary quadratic field (the CM case), then the endomoprhism ring is an order of K;
- (2) otherwise it's \mathbf{Z} , where endomorphisms are given by multiplication by integers.