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Notes: these notes were live texed and have not been edited.

1. Lattices and elliptic curves

1.1. Weierstrass parameterization. Complex elliptic curve correspond with com-
plex tori C/Λ where Λ = Z[ω1, ω2] is a two-dimensional lattice with a basis [ω1, ω2]. To
explain this, set τ = ω2/ω1 and assume =(τ) > 0 (that is, we’ve chosen an orientation
for the lattice Λ). Set q = e2πiτ , so that |q| < 1 when τ is in the upper half plane H.
There is a correspondence C/Λ → EΛ, where EΛ is the elliptic curve defined by the
(affine) equation y2 = 4x3 − g2(Λ)x− g3(Λ), where

g2(Λ) = 60
∑
ω∈Λ
ω 6=0

ω−4, g3(Λ) = 140
∑
ω∈Λ
ω 6=0

ω−6.

There is an explicit parameterization given by y = ℘′(z), x = ℘(z), where ℘(z) = ℘Λ(z)
denotes the Weierstrass ℘-function

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

(
1

(z + λ)2
− 1

λ2

)
associated to Λ.

1.2. Homothety of lattices. Lattices can be rescaled by nonzero complex scalars.
If Λ = Z[ω1, ω2] is a lattice and α ∈ C× then αΛ ..= Z[αω1, αω2]. The quantity
τ = ω2/ω1 ∈ H is the invariant of homothety classes of (oriented) lattices. There is
a (surjective but not injective) map from homothety classes of lattices to isomorphism
classes of elliptic curves over C defined as follows: note that g2(αΛ) = α−4g2(Λ) and
g3(αΛ) = α−6g3(Λ). So we must check that the elliptic curves y2 = x3 − g2x − g3

and y2 = x3 − g2α
−4x − g3α

−6 are isomorphic over C. In projective coordinates an
isomorphism is given by

(x : y : z) 7→ (x : yα−1 : zα2).

Theorem 1. This map induces a bijection

Homothety\{Z[ω1, ω2] | ω2/ω1 ∈ H}/ SL2(Z)
φ→ {E/C elliptic curve}/isomorphism

Proof. Let M =

(
a b
c d

)
, which acts on lattices by

Z[ω1, ω2] ·M 7→ Z[aω1 + cω2, bω1 + dω2]

Get this to work with the FLT action on H; add details. �

2. The modular curves X0(N)

Let Y0(1) = SL2(Z)\H = Γ(1), which is the open modular curve of level one.
Add picture of usual fundamental domain. Explain how S and T identify the edges.
Jeff: “this thing is an orbifold — yuck!”
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We will be interested in the subgroups

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
,

Γ(N) = {M ∈ SL2(Z) |M ≡ 1 (mod N)} .
The groups Γ(N) are called the principal congruence subgroups. They are the kernel
of the group homomorphism SL2(Z) → SL2(Fp) given by reduction mod p, and so
they are normal subgroups. The index of Γ(N) in Γ(1) is N3

∏
p|N(1 − p−2). Any

subgroup between some Γ(N) and Γ(1) is called a congruence subgroup. Thus Γ0(N) is
a congruence subgroup. It is not normal in Γ(1). For example,(

0 −1
1 0

)
Γ0(N)

(
0 1
−1 0

)
= Γ0(N) ..=

{(
a b
c d

)
∈ SL2(Z) | b ≡ 0 (mod N)

}
.

Define the open modular curve Y0(N) = Γ0(N)\H of level N , and the compacti-
fied curve X0(N) is obtained by adjoining the cusps to Y0(N).

Theorem 2 (Lehner). For prime p one has [Γ(1) : Γ0(p)] = p+ 1. The genus of X0(p)
is

g =
p+ 1

12
− ν1

4
− ν2

3
where ν1 is the number of solutions of m2 + 1 ≡ 0 (mod p) and ν2 is the number of
solutions of m2 − m − 1 ≡ 0 (mod p). In particular, X0(p) is of genus 0 exactly for
p = 2, 3, 5, 7, 13.

The curve X0(p) is an elliptic curve for a finite set of primes including 11.

Remark 3. The surface X0(N) has a lot of endomorphisms. For example, if m divides
N and satisfies gcd(m,N/m) = 1, then the Atkin-Lehner involution at m corresponds
to the fractional linear transformation

Wm(τ) =
1√
m

(
ma b
Nc md

)
τ,

where a, b, c, d ∈ Z are chosen so that m2ad − Nbc = m. It is a fact that X0(N) is
invariant under Wm for p | N , as the matrices defining these involutions normalize
Γ0(N).

Remark 4. The curve X0(N) is also invariant under τ 7→ −τ̄ .

3. Isogenies

An isogeny is a nonzero holomorphic homomorphism between complex tori C/Λ.

Example 5. Multiplication by a nonzero integer defines an isogeny of a complex tori
with itself. Let Λτ = Z[1, τ ] for τ ∈ H, and set Eτ = C/Λτ . The kernel of multiplication
by N (regarded as an endomorphism [N ] of the abelian group Eτ ) is given by

ker[N ] =

{
a+ bτ

N
| a, b = 0, 1, 2, . . . , N − 1

}
.

Example 6. A cyclic isogeny of order N is an isogeny φ : E → E ′ with kernel a cyclic
subgroup of order N . For example, take Λ1 = Z[1, τ ] and Λ2 = Z[1, Nτ ], and let φ be
multiplication by N , which defines a map from E1 = C/Λ1 to E2 = C/Λ2. The kernel
of φ is {0, 1/N, 2/N, . . . , (N − 1)/N}, a cyclic group of order N . Thus φ is a cyclic
isogeny of order N .
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Example 7. Dual cyclic isogeny from Λ2 = Z[1, Nτ ] to Λ3 = Z[N,Nτ ] ∼= Λ1.

4. Complex multiplication

Some elliptic curves have extra endomorphisms. They are said to have complex
multiplication. They require a lattice Λ = Z[1, τ ] where τ belongs to an imaginary
quadratic field K = Q(

√
−d) with d squarefree and positive. Whenever τ ∈ K, then

Λ is a fractional ideal of an order in K. Recall that an order is a subring of the ring

of integers O ⊆ K of the form Of = Z
[
1, ∆+

√
D

2

]
where ∆ = df 2 for some integer

f ≥ 1. We can compute O from τ . To see this, suppose that τ satisfies an equation
Ax2 + Bx + C = 0 where gcd(A,B,C) = 1 with A > 0. The discriminant of this
quadratic equation is B2 − 4AC = ∆ = −df 2 < 0.

Let ω ∈ Of . Then this acts on Λτ by multiplication, and thus multiplication by
ω gives an self-isogeny φ of E = C/Λτ for τ ∈ K with complex multiplication by the
order Of . Note that kerφ = ω−1Λτ is equal to a finite number of cosets of Λτ in the
larger lattice ω−1Λτ .

Theorem 8. The endomorphism ring of an elliptic curve Eτ/C is described as follows:

(1) if τ ∈ K for K/Q an imaginary quadratic field (the CM case), then the endo-
moprhism ring is an order of K;

(2) otherwise it’s Z, where endomorphisms are given by multiplication by integers.


