Gross-Zagier reading seminar

Lecture 2 • Jeff Lagarias • September 16, 2014
Notes by Cameron Franc

Notes: these notes were live texed and have not been edited.

1. Lattices and ELLiptic CURVES

1.1. Weierstrass parameterization. Complex elliptic curve correspond with complex tori \mathbf{C} / Λ where $\Lambda=\mathbf{Z}\left[\omega_{1}, \omega_{2}\right]$ is a two-dimensional lattice with a basis $\left[\omega_{1}, \omega_{2}\right]$. To explain this, set $\tau=\omega_{2} / \omega_{1}$ and assume $\Im(\tau)>0$ (that is, we've chosen an orientation for the lattice Λ). Set $q=e^{2 \pi i \tau}$, so that $|q|<1$ when τ is in the upper half plane \mathcal{H}. There is a correspondence $\mathbf{C} / \Lambda \rightarrow E_{\Lambda}$, where E_{Λ} is the elliptic curve defined by the (affine) equation $y^{2}=4 x^{3}-g_{2}(\Lambda) x-g_{3}(\Lambda)$, where

$$
g_{2}(\Lambda)=60 \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \omega^{-4}, \quad g_{3}(\Lambda)=140 \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \omega^{-6} .
$$

There is an explicit parameterization given by $y=\wp^{\prime}(z), x=\wp(z)$, where $\wp(z)=\wp_{\Lambda}(z)$ denotes the Weierstrass \wp-function

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda \backslash\{0\}}\left(\frac{1}{(z+\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)
$$

associated to Λ.
1.2. Homothety of lattices. Lattices can be rescaled by nonzero complex scalars. If $\Lambda=\mathbf{Z}\left[\omega_{1}, \omega_{2}\right]$ is a lattice and $\alpha \in \mathbf{C}^{\times}$then $\alpha \Lambda:=\mathbf{Z}\left[\alpha \omega_{1}, \alpha \omega_{2}\right]$. The quantity $\tau=\omega_{2} / \omega_{1} \in \mathcal{H}$ is the invariant of homothety classes of (oriented) lattices. There is a (surjective but not injective) map from homothety classes of lattices to isomorphism classes of elliptic curves over \mathbf{C} defined as follows: note that $g_{2}(\alpha \Lambda)=\alpha^{-4} g_{2}(\Lambda)$ and $g_{3}(\alpha \Lambda)=\alpha^{-6} g_{3}(\Lambda)$. So we must check that the elliptic curves $y^{2}=x^{3}-g_{2} x-g_{3}$ and $y^{2}=x^{3}-g_{2} \alpha^{-4} x-g_{3} \alpha^{-6}$ are isomorphic over C. In projective coordinates an isomorphism is given by

$$
(x: y: z) \mapsto\left(x: y \alpha^{-1}: z \alpha^{2}\right)
$$

Theorem 1. This map induces a bijection
Homothety $\backslash\left\{\mathbf{Z}\left[\omega_{1}, \omega_{2}\right] \mid \omega_{2} / \omega_{1} \in \mathcal{H}\right\} / \mathrm{SL}_{2}(\mathbf{Z}) \xrightarrow{\phi}\{E / \mathbf{C}$ elliptic curve $\} /$ isomorphism Proof. Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, which acts on lattices by

$$
\mathbf{Z}\left[\omega_{1}, \omega_{2}\right] \cdot M \mapsto \mathbf{Z}\left[a \omega_{1}+c \omega_{2}, b \omega_{1}+d \omega_{2}\right]
$$

Get this to work with the FLT action on \mathcal{H}; add details.

2. The modular curves $X_{0}(N)$

Let $Y_{0}(1)=\mathrm{SL}_{2}(\mathbf{Z}) \backslash \mathcal{H}=\Gamma(1)$, which is the open modular curve of level one. Add picture of usual fundamental domain. Explain how S and T identify the edges. Jeff: "this thing is an orbifold - yuck!"

We will be interested in the subgroups

$$
\begin{aligned}
\Gamma_{0}(N) & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z}) \right\rvert\, c \equiv 0 \quad(\bmod N)\right\} \\
\Gamma(N) & =\left\{M \in \mathrm{SL}_{2}(\mathbf{Z}) \mid M \equiv 1 \quad(\bmod N)\right\}
\end{aligned}
$$

The groups $\Gamma(N)$ are called the principal congruence subgroups. They are the kernel of the group homomorphism $\mathrm{SL}_{2}(\mathbf{Z}) \rightarrow \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ given by reduction $\bmod p$, and so they are normal subgroups. The index of $\Gamma(N)$ in $\Gamma(1)$ is $N^{3} \prod_{p \mid N}\left(1-p^{-2}\right)$. Any subgroup between some $\Gamma(N)$ and $\Gamma(1)$ is called a congruence subgroup. Thus $\Gamma_{0}(N)$ is a congruence subgroup. It is not normal in $\Gamma(1)$. For example,

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \Gamma_{0}(N)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\Gamma^{0}(N):=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z}) \right\rvert\, b \equiv 0 \quad(\bmod N)\right\}
$$

Define the open modular curve $Y_{0}(N)=\Gamma_{0}(N) \backslash \mathcal{H}$ of level N, and the compactified curve $X_{0}(N)$ is obtained by adjoining the cusps to $Y_{0}(N)$.
Theorem 2 (Lehner). For prime p one has $\left[\Gamma(1): \Gamma_{0}(p)\right]=p+1$. The genus of $X_{0}(p)$ is

$$
g=\frac{p+1}{12}-\frac{\nu_{1}}{4}-\frac{\nu_{2}}{3}
$$

where ν_{1} is the number of solutions of $m^{2}+1 \equiv 0(\bmod p)$ and ν_{2} is the number of solutions of $m^{2}-m-1 \equiv 0(\bmod p)$. In particular, $X_{0}(p)$ is of genus 0 exactly for $p=2,3,5,7,13$.

The curve $X_{0}(p)$ is an elliptic curve for a finite set of primes including 11.
Remark 3. The surface $X_{0}(N)$ has a lot of endomorphisms. For example, if m divides N and satisfies $\operatorname{gcd}(m, N / m)=1$, then the Atkin-Lehner involution at m corresponds to the fractional linear transformation

$$
W_{m}(\tau)=\frac{1}{\sqrt{m}}\left(\begin{array}{cc}
m a & b \\
N c & m d
\end{array}\right) \tau
$$

where $a, b, c, d \in \mathbf{Z}$ are chosen so that $m^{2} a d-N b c=m$. It is a fact that $X_{0}(N)$ is invariant under W_{m} for $p \mid N$, as the matrices defining these involutions normalize $\Gamma_{0}(N)$.

Remark 4. The curve $X_{0}(N)$ is also invariant under $\tau \mapsto-\bar{\tau}$.

3. Isogenies

An isogeny is a nonzero holomorphic homomorphism between complex tori \mathbf{C} / Λ.
Example 5. Multiplication by a nonzero integer defines an isogeny of a complex tori with itself. Let $\Lambda_{\tau}=\mathbf{Z}[1, \tau]$ for $\tau \in \mathcal{H}$, and set $E_{\tau}=\mathbf{C} / \Lambda_{\tau}$. The kernel of multiplication by N (regarded as an endomorphism $[N]$ of the abelian group E_{τ}) is given by

$$
\operatorname{ker}[N]=\left\{\left.\frac{a+b \tau}{N} \right\rvert\, a, b=0,1,2, \ldots, N-1\right\}
$$

Example 6. A cyclic isogeny of order N is an isogeny $\phi: E \rightarrow E^{\prime}$ with kernel a cyclic subgroup of order N. For example, take $\Lambda_{1}=\mathbf{Z}[1, \tau]$ and $\Lambda_{2}=\mathbf{Z}[1, N \tau]$, and let ϕ be multiplication by N, which defines a map from $E_{1}=\mathbf{C} / \Lambda_{1}$ to $E_{2}=\mathbf{C} / \Lambda_{2}$. The kernel of ϕ is $\{0,1 / N, 2 / N, \ldots,(N-1) / N\}$, a cyclic group of order N. Thus ϕ is a cyclic isogeny of order N.

Example 7. Dual cyclic isogeny from $\Lambda_{2}=\mathbf{Z}[1, N \tau]$ to $\Lambda_{3}=\mathbf{Z}[N, N \tau] \cong \Lambda_{1}$.

4. Complex multiplication

Some elliptic curves have extra endomorphisms. They are said to have complex multiplication. They require a lattice $\Lambda=\mathbf{Z}[1, \tau]$ where τ belongs to an imaginary quadratic field $K=\mathbf{Q}(\sqrt{-d})$ with d squarefree and positive. Whenever $\tau \in K$, then Λ is a fractional ideal of an order in K. Recall that an order is a subring of the ring of integers $\mathcal{O} \subseteq K$ of the form $\mathcal{O}_{f}=\mathbf{Z}\left[1, \frac{\Delta+\sqrt{D}}{2}\right]$ where $\Delta=d f^{2}$ for some integer $f \geq 1$. We can compute \mathcal{O} from τ. To see this, suppose that τ satisfies an equation $A x^{2}+B x+C=0$ where $\operatorname{gcd}(A, B, C)=1$ with $A>0$. The discriminant of this quadratic equation is $B^{2}-4 A C=\Delta=-d f^{2}<0$.

Let $\omega \in \mathcal{O}_{f}$. Then this acts on Λ_{τ} by multiplication, and thus multiplication by ω gives an self-isogeny ϕ of $E=\mathbf{C} / \Lambda_{\tau}$ for $\tau \in K$ with complex multiplication by the order \mathcal{O}_{f}. Note that $\operatorname{ker} \phi=\omega^{-1} \Lambda_{\tau}$ is equal to a finite number of cosets of Λ_{τ} in the larger lattice $\omega^{-1} \Lambda_{\tau}$.
Theorem 8. The endomorphism ring of an elliptic curve E_{τ} / \mathbf{C} is described as follows:
(1) if $\tau \in K$ for K / \mathbf{Q} an imaginary quadratic field (the CM case), then the endomoprhism ring is an order of K;
(2) otherwise it's \mathbf{Z}, where endomorphisms are given by multiplication by integers.

