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1. Introduction

Let E/Q be an elliptic curve. The Birch–Swinnerton-Dyer conjecture predicts that the
rank of E is the order of vanishing of the L-function of E at s = 1. One of the hard parts
of this conjecture is constructing the required points on E. For example, if the L-function
vanishes, one must somehow show that E has a point of infinite order.

It is now known that for every elliptic curve E there is a surjective map π : X → E from
a modular curve X = X0(N). One strategy for finding points on E is to take the image of
points on X. This is a useful idea because the points of X have a meaning: they correspond
to degree N isogenies of elliptic curves with cyclic kernel. One can use this to write down at
least some explicit points on X. The easiest points to write down are the so-called Heegner
points, corresponding to elliptic curves with complex multiplication.

Let K be an imaginary quadratic field of discriminant D, relatively prime to N . A Heeg-
ner point of X is an isogeny E → E ′ such that E and E ′ both have complex multiplication
by OK . (One can define more general Heegner points, but these are the only ones we will
consider.) It turns out that Heegner points exist if and only if D is congruent to a square
modulo 4N , in which case there are 22h of them, where s is the number of distinct primes
dividing N and h is the class number of K. The theory of complex multiplication for elliptic
curves shows that every Heegner point is defined over the Hilbert class field H of K.

Let x ∈ X(H) be a Heegner point, let π(x) ∈ E(H) be its image under π, and let y ∈ E(K)
be the trace of π(x) down to K. It turns out y is independent of the choice of x, up to sign.
Since we’ve taken D to be a square modulo 4N , the sign in the functional equation for
L(E/K, s) is −1, and so L(E/K, s) vanishes at s = 1. It therefore “makes sense” to look
at the value of the derivative at s = 1. (Of course, one does not need vanishing to look at
the value of the derivative, but without vanishing one does not expect a nice answer.) The
Gross–Zagier formula is:

(1) L′(E/K, 1) = (easy stuff)× (period)× ĥ(y).

Here the “easy stuff” is made up of things like the degree of π, the number of units of OK ,
etc.; it’s always non-zero. The period is an integral of a rational holomorphic 1-form on E

over E(R), and is a non-zero transcendental number. Finally, ĥ(y) denotes the Néron–Tate
height of the point y on E(K). This is zero if and only if y is a torsion point.

One can use (1) to obtain information about E over Q (instead of K) in some instances:

Theorem 2. Suppose that L(E/Q, 1) = 0 but L′(E/Q, 1) 6= 0. Then there is a point in
E(Q) of infinite order.

Proof. Let E ′ be the quadratic twist of E corresponding to the field K. We then have a
factorization

L(E/K, s) = L(E/Q, s)L(E ′/Q, s).

By a theorem of Waldspurger, one can choose K so that L′(E ′/Q, 1) 6= 0; fix such a K. It

follows then that L′(E/K, 1) 6= 0, and so ĥ(y) 6= 0 by (1), and so y ∈ E(K) has infinite
order. One can furthermore show that y belongs to E(Q) in this case (one knows y = ±yc
in general, where c is complex conjugation, and our choice of K forces a + here [check
this!]). �
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2. Overview of the proof

2.1. Reformulation using modular forms. Let J be the Jacobian of X0(N). Given a
normalized eigenform f ∈ Snew

2 (N), there is a corresponding quotient Ef of J , and every E
of interest is isogeneous to an Ef . Define

µ(f) = L′(Ef/K, 1)

and

ν(f) = ĥ(y)(f, f).

Here ĥ(y) is the height of y ∈ Ef (K) and (f, f) is the Petersson inner product of f with
itself (which is roughly the period in the Gross–Zagier formula). We want to show µ = ν
(up to some easy factors). We can extend µ and ν uniquely to linear functions on the
space of newforms. The non-degeneracy of the Petersson inner product implies that they
are represented by cusp forms. That is, we have cusp forms F and G such that

µ(f) = (f, F ), ν(f) = (f,G)

for all normalized eigenforms f ∈ Snew
2 (N). Furthermore, F and G are well-defined up to

oldforms. (We could specify F and G uniquely by taking them to be newforms, but prefer
not to.) It thus suffices to show F = G up to oldforms, i.e., that their prime-to-N Fourier
coefficients agree. This is accomplished by computing the Fourier coefficients of F and G in
closed form and directly comparing.

2.2. The form F . Let f ∈ Snew
2 (N) be a normalized eigenform, and write f =

∑
n≥1 anq

n.
Then

L(Ef/Q, s) =
∑
n≥1

ann
−s.

A simple computation shows that

L(Ef/K, s) =
∑
n≥1

anr(n)n−s,

where r(n) is the number of integral ideals in K of norm n. In other words, nth coefficient
in the above Dirichlet series is the product of the nth coefficient in L(Ef/Q, s) and the nth
coefficient of the Dedekind zeta function of K. The way to understand this type of product
of L-series is through Rankin’s method.

Define

θ =
∑
n≥0

r(n)qn

where r(0) is roughly the class number of K. We have∑
n≥0

anr(n)e−2πny =

∫ 1

0

f(x+ iy)θ(x+ iy)dx

for any y > 0. (Here f and θ are functions of q = e2πiz.) Multiplying by ys−1 and integrating
from 0 to ∞, we find

L(Ef/K, s) =

∫ ∞
0

∫ 1

0

f(x+ iy)θ(x+ iy)ys−1dxdy
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(up to some easy factors). We can rewrite this as

L(Ef/K, s) =

∫
Γ∞\h

f(z)θ(z)ys−1dxdy

Here Γ∞ ⊂ Γ0(N) is the group of linear fractional transformations generated by z 7→ z + 1.
We now use the fact that f(z) and θ(z) are invariant under all of Γ0(N) to write this integral
as

L(Ef/K, s) =

∫
Γ0(N)\h

f(z)θ(z)Es(z)dxdy = (f, θEs)

where Es(z) is the non-holomorphic Eisenstein series

Es(z) =
∑

γ∈Γ∞\Γ0(N)

(γ · y)s−1.

(In fact, there was a lie here: θ(z) is only invariant under a subgroup of Γ0(N) of the form
Γ0(NM), so θEs is a form on this smaller group. However, one can trace down to Γ0(N)
to get a form on the larger group, and it has the same inner product with f .) We can
now take the derivative at s = 1 to get a formula for L′(Ef/K, 1). However, the result still
has a deficiency: Es is non-holomorphic. To fix this, one applies a holomorphic projection
operator.

Thus F is obtained by taking the product of an explicit theta function and non-holomorphic
Eisenstein series on Γ0(NM), tracing down to Γ0(N), taking the derivative at s = 1, and
then applying a holomorphic projection operator. Working through these operations gives
an explicit (and long) expression for the Fourier coefficients of F . This is a long computation,
but fairly elementary.

A few remarks:

• The identity L(Ef/K, s) = (f, θEs) implies that L(Ef/K, s) has a functional equa-
tion, since Es has a functional equation in s. Using the sign of the functional equation,
one can see that L(Ef/K, 1) vanishes in cases of interest.
• We will actually need to work with a more general L-series. Let A be an ideal class

of K and let rA (n) be the number of integral ideals of K in the class A with norm
n. Put

LA (f, s) =
∑
n≥1

rA (n)ann
−s.

It is this series we will need to work with. The above results go through for it, and
we get a modular form FA .
• All the above goes through for higher weight forms. In fact, it is easier for higher

weight forms because Eisenstein series in weight 2 are subtle.

2.3. The form G. Let f1, . . . , fr be a basis for Snew
2 (N) consisting of normalized eigenforms.

Then, somewhat obviously, we have

G =
r∑
i=1

ν(fi)
fi

(fi, fi)
=

r∑
i=1

ĥ(yi)fi,
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where yi is the projection of x to Ei = Efi . (Let’s forget about the trace from H to K for
the moment.) We can therefore write

an(G) =
r∑
i=1

ĥ(yi)an(fi).

Note that ĥ(yi) = 〈yi, yi〉Ei
, where 〈, 〉Ei

denotes the bilinear heigh pairing on Ei. Further-
more, the Hecke algebra T acts on J , and on each factor Ei. In fact, it acts on Ei in the
same way it acts on fi, that is, if Tfi = λfi then TP = λP for all P ∈ Ei. As an(fi) is the
Tn-eigenvalue of fi, we have Tnyi = an(fi)yi. Thus we can rewrite the above as

an(G) =
r∑
i=1

〈yi, Tnyi〉Ei
.

But this is just 〈x, Tnx〉J (the Néron–Tate height pairing on J) since the Ei are orthogonal
under the height pairings. This, in turn, is equal to 〈c, Tnc〉X (the Néron height pairing on
the curve X), where c is the degree 0 divisor (x)− (∞). We have thus have the formula

G =
∑
n≥1

〈c, Tnc〉X · qn

The real problem, then, is to compute the height pairing 〈c, Tnc〉X . Néron’s theory factors
this pairing into a product of local height pairings, so it suffices to compute each of these
separately. At the archimedean places, this involves explicit special functions. At the non-
archimedean places, the local height is defined in terms of intersection theory of divisors on
X0(N), and the computations boil down to deformation theory of elliptic curves. In the end,
one obtains a complicated, though explicit, formula for the height.

Remark 3. I ignored the tracing from H to K above. To accomodate that, we consider the
more general series

Gσ =
∑
n≥1

〈c, Tncσ〉Xqn

for σ ∈ Gal(H/K). One then shows that FA and Gσ coincide up to oldforms when A and
σ correspond under the class field theory isomorphism Cl(K) = Gal(H/K). �

3. Plan for the seminar

• Lecture 2: Modular curves and Heegner points
• Lecture 3: Modular forms and Hecke operators
• Lecture 4: Nérons theory of heights on curves
• Lecture 5: Achimedean local heights
• Lecture 6: Achimedean local heights (continued)
• Lecture 7: Modular curves over Z (Deligne–Rapoport compactification)
• Lecture 8: Non-archimedean local heights
• Lecture 9: Non-archimedean local heights (continued)
• Lecture 10: L-functions
• Lecture 11: L-functions (continued)
• Lecture 12: L-functions (continued)
• Lecture 13: Proof of main result
• Lecture 14: Applications
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