## 8 Central stability homology for polynomial VIC( $\mathbb{Z})$-modules

Proof of Theorem 7.5. We prove the theorem by a double induction over $r$ and $i$. If $r=-\infty$ or $i<0$ the theorem is true. We thus may assume that if $M$ has polynomial degree $\leq s$ in ranks $>d$,

$$
H S_{q}(M)_{n} \cong 0 \quad \text { for } n>\max (d+q, 2 q+s)
$$

as long as $s<r$ or $q<i$.
Consider two double complexes:

$$
\begin{aligned}
X_{p q} & =\bigoplus_{(f, C) \in \operatorname{Hom}_{\mathrm{VIC}(Z)}\left(\mathbb{Z}^{p}, \mathbb{Z}^{n}\right)} \bigoplus_{(g, D) \in \operatorname{Hom}_{\operatorname{VIC}(Z)}\left(\mathbb{Z}^{q}, C\right)} M_{\mathrm{im} f \oplus D} \\
& \cong C S_{p}\left(C S_{q}\left(\Sigma^{p} M\right)\right)_{n} \\
& \cong C S_{q}\left(C S_{p}(M(0)) \otimes M\right)_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
Y_{p q} & =\bigoplus_{(f, C) \in \operatorname{Hom}_{\operatorname{vic}(Z)}\left(\mathbb{Z}^{p}, \mathbb{Z}^{n}\right)} \bigoplus_{(g, D) \in \operatorname{Hom} \operatorname{vic}(Z)}\left(\mathbb{Z}^{q}, C\right) \\
& \cong C S_{p}\left(C S_{q}(M)\right)_{n} \\
& \cong C S_{q}\left(C S_{p}(M)\right)_{n} .
\end{aligned}
$$

Let

$$
E_{p q}^{1}=C S_{p}\left(H S_{q}\left(\Sigma^{p} M\right)\right)_{n}
$$

denote the spectral sequence associated to $X$. It converges to zero in the range $n>2(p+q)$.
Let us denote the spectral sequence associated to $Y$ by $\widehat{E}_{p q}^{r}$. It turns out that $d^{1}: \widehat{E}_{1, q}^{1} \rightarrow \widehat{E}_{0, q}^{1}$ is always the zero map.

The map of double complexes

$$
Y_{p q} \longrightarrow X_{p q}
$$

induces maps

$$
\widehat{E}_{p q}^{1} \longrightarrow E_{p q}^{1}
$$

that are surjective for $n>\max (d+p+q-1, p+2 q+r-1)$ and injective for $n>\max (d+p+q, p+2 q+r+1)$. This uses the induction hypothesis.

Therefore

$$
E_{0, i}^{2}(M)_{n}=E_{0, i}^{1} \cong H S_{i}(M)_{n} \quad \text { for } n>\max (d+i, 2 i+r)
$$

The theorem follows because by induction

$$
E_{p q}^{1} \cong C S_{p}\left(H S_{q}\left(\Sigma^{p} M\right)\right)_{n} \cong 0
$$

for $q<i$ and $n>\max (d+q, p+2 q+r)$. This implies that

$$
H S_{i}(M)_{n} \cong E_{0,1}^{1} \cong E_{0, i}^{2} \cong E_{0, i}^{\infty}
$$

in the given range, which vanishes for $n>2 i$.

