7 Polynomial functors

Polynomial functors have a long history and come in various forms. The prototypical polynomial functor $\mathrm{Ab} \rightarrow \mathrm{Ab}$ sends an abelian group A to its k th tensor power $A^{\otimes k}$. These and similar play an important role in algebraic geometry and representation theory of group schemes. In 1950, Eilenberg-Maclane defined them in terms of "cross effects" to compute the homology of Eilenberg-Maclane spaces $K(\pi, n)$. In homological stability, polynomial functors were introduced by Dwyer in 1980 to compute algebraic K-theory groups. We will use a variant of Dwyer's definition that seems to be most general.

Definition 7.1. Let M be a $\operatorname{VIC}(\mathbb{Z})$-module. Define ΣM to be the $\operatorname{VIC}(\mathbb{Z})$-module that is M precomposed with the functor $\mathbb{Z} \oplus-: \operatorname{VIC}(\mathbb{Z}) \rightarrow \operatorname{VIC}(\mathbb{Z})$ that sends $(f, C) \in \operatorname{Hom}_{\mathrm{VIC}(\mathbb{Z})}(A, B)$ to $\left(\mathrm{id}_{\mathbb{Z}} \oplus f, C\right) \in \operatorname{Hom}_{\mathrm{VIC}(\mathbb{Z})}(\mathbb{Z} \oplus$ $A, \mathbb{Z} \oplus B)$.
There is a canonical $\operatorname{VIC}(\mathbb{Z})$-homomorphism $M \rightarrow \Sigma M$ given by the maps $M_{A} \rightarrow M_{\mathbb{Z} \oplus A}$ induced by $(A \subset \mathbb{Z} \oplus A, \mathbb{Z}) \in \operatorname{Hom}_{\mathrm{VIC}(\mathbb{Z})}(A, \mathbb{Z} \oplus A)$.
Let us denote

$$
(\mathrm{co}) \operatorname{ker}(M):=(\mathrm{co}) \operatorname{ker}(M \rightarrow \Sigma M) .
$$

Let $d \in \mathbb{N}_{0} \cup\{-\infty\}$. We say M has polynomial degree $-\infty$ in ranks $>d$ if $M_{n} \cong 0$ for all $n>d$.
We say M has polynomial degree ≤ 0 in ranks $>d$ if $(\operatorname{ker} M)_{n} \cong(\operatorname{coker} M)_{n+1} \cong 0$ for all $n>d$.
Let $r \geq 1$. We say M has polynomial degree $\leq r$ in ranks $>d$ if $(\operatorname{ker} M)_{n} \cong 0$ for all $n>d$ and coker M has polynomial degree $\leq r-1$ in ranks $>d-1$.
(For simplicity, we will define $0-1=-\infty$.)
Proposition 7.2. If $a \mathrm{VIC}(\mathbb{Z})$-module M has polynomial degree $\leq r$ in ranks $>d$, then there is a polynomial $p \in \mathbb{Q}[X]$ of degree $\leq r$ such that $\mathrm{rk} M_{n}=p(n)$ for all $n>d$.

Theorem 7.3 (Dwyer 1980). If M has finite polynomial degree then

$$
H_{i}\left(\mathrm{GL}_{n-1}(\mathbb{Z}) ; M_{n-1}\right) \longrightarrow H_{i}\left(\mathrm{GL}_{n}(\mathbb{Z}) ; M_{n}\right)
$$

is an isomorphism for $n \gg i$.
Exercise 7.4. Check that H_{1} (IA) has polynomial degree ≤ 3 in ranks $>-\infty$.
Theorem 7.5 (Miller-P.-Petersen). Let M be $a \operatorname{VIC}(\mathbb{Z})$-module that has polynomial degree $\leq r$ in ranks $>d$. Then

$$
H S_{i}(M)_{n} \cong 0 \quad \text { for } n>\max (d+i, 2 i+r)
$$

Corollary 7.6 (Miller-P.-Wilson, Miller-P.-Petersen). $H_{2}(I A)$ is presented in degrees ≤ 9.

