5 Highly connected simplicial complexes

Definition 5.1. An (abstract) simplicial complex X on a vertex set V is a set of nonempty subsets of V that is closed under subsets and contains all singletons. We call a subset in X a simplex of X. If a simplex has $(p+1)$ elements it is called an p-simplex or p-dimensional. A proper subset of a simplex is called a face.

A (topological) p-simplex is the topological space given by the convex hull of the standard basis vectors in \mathbb{R}^{p+1}. The simplex spanned by a proper subset of standard basis vectors is called a face. The (topological) realization $|X|$ of an abstract simplicial complex X is the space of topological simplicies for each simplex in X glued along their faces.

Definition 5.2. An (abstract) Δ-complex X (or semisimpicial set) is a sequence of sets $\left(X_{p}\right)_{p \in \mathbb{N}_{0}}$ together with face maps $d_{i}: X_{p+1} \rightarrow X_{p}$ for each $i \in\{0, \ldots, p+1\}$ and $p \geq 1$, such that

$$
d_{i} \circ d_{j}=d_{j-1} \circ d_{i} \quad \text { for } i<j
$$

The (topological) realization $|X|$ of an abstract Δ-complex X is the space of topological p-simplicies for each element in X_{p} for all $p \geq 1$ glued together along the face maps.

Exercise 5.3. Given an abstract simplicial complex, find an abstract Δ-complex with the same realization.
Definition 5.4. The simplicial chain complex $C_{*}(X)$ of a Δ-complex X is given by $C_{p}(X)=\mathbb{Z} X_{p}$ and the boundary map $\partial=\sum(-1)^{i} d_{i}$. Denote the homology of this chain complex by $H_{*}(X)$. (It is isomorphic to the (singular) homology of the realization.)

Definition 5.5. A simplicial map $X \rightarrow Y$ between simplicial complexes is a map between the vertex sets such that the image of a simplex of X is a simplex of Y.

For a simplicial complex X, let $\left[S^{p}, X\right]$ be the set of equivalence classes of all simplicial maps $Y \rightarrow X$ for all simplicial complexes Y whose realization is homeomorphic to the p-sphere S^{p} under the following equivalence relation. $f_{1}: Y_{1} \rightarrow X$ and $f_{2}: Y_{2} \rightarrow X$ are (freely homotopy) equivalent if there is a simplicial complex Z whose realization is homeomorphic to $S^{p} \times[0,1]$ and whose two boundaries are Y_{1} and Y_{2} together with a simplicial map $Z \rightarrow X$ that restricts to f_{1} and f_{2} on the boundary. ($\left[S^{p}, X\right]$ is in bijection to the set of free homotopy classes of continuous maps $S^{p} \rightarrow|X|$.)

A simplicial complex X is called n-connected if $\left[S^{p}, X\right]$ contains only the trivial class for all $p \leq n$.
Theorem 5.6 (Hurewicz). If a simplicial complex is n-connected than $\tilde{H}_{i}(X) \cong 0$ for all $i \leq n$.
Definition 5.7. Let X be a simplicial complex. The link of a simplex σ in X is the union of all simplicies that are disjoint from σ and whose union with σ is also a simplex in X. It is denoted by $\operatorname{Lk}_{X}(\sigma)$.

A simplicial simplex X is called weakly Cohen-Macaulay of dimension n if X is $(n-1)$-connected and $\mathrm{Lk}_{X}(\sigma)$ is $(n-p-2)$-connected for every p-simplex σ of X.

Definition 5.8. Let PB_{n} be the partial basis complex of \mathbb{Z}^{n}, i.e. a set of nonzero vectors in \mathbb{Z}^{n} form a simplex if they can be completed to a basis of \mathbb{Z}^{n}.

Theorem 5.9 (Maazen 1979). PB_{n} is $(n-2)$-connected.
Proof. Exercise.
Definition 5.10. Let us define the simplicial complex PBC_{n}. Its vertex set contains all pairs (v, H), where $v \in \mathbb{Z}^{n}$ is nonzero and $H \subset Z^{n}$ is a summand such that $\operatorname{span}(v) \oplus H=\mathbb{Z}^{n}$. The subset $\left\{\left(v_{0}, H_{0}\right), \ldots,\left(v_{p}, H_{p}\right)\right\}$ is a simplex if $\left\{v_{0}, \ldots, v_{p}\right\}$ is a partial basis of \mathbb{Z}^{n} and $v_{i} \in H_{j}$ for all $i \neq j$.

Definition 5.11. A join complex over a simplicial complex X is a simplicial complex Y together with a simplicial map $\pi: Y \rightarrow X$, satisfying the following properties:

1. π is surjective.
2. π is simplexwise injective.
3. A collection of vertices y_{0}, \ldots, y_{p} spans a simplex of Y whenever there exists simplices $\theta_{0}, \ldots, \theta_{p}$ such that for all i, y_{i} is a vertex of θ_{i} and the simplex $\pi\left(\theta_{i}\right)$ has vertices $\pi\left(y_{0}\right), \ldots, \pi\left(y_{p}\right)$.

Figure 1: The map π does not exhibit Y as a join complex over X unless θ is a simplex of Y.

Theorem 5.12 (Hatcher-Wahl 2010). Let Y be a join complex over X via $\pi: Y \rightarrow X$. Assume X is weakly Cohen-Macaulay of dimension n. Further assume that for all p-simplices τ of Y, the image of the link $\pi\left(\operatorname{Lk}_{Y}(\tau)\right)$ is weakly Cohen-Macaulay of dimension $(n-p-2)$. Then Y is $\frac{n-2}{2}$-connected.

Theorem 5.13 (Randal-Williams-Wahl 2017). PBC_{n} is $\frac{n-3}{2}$-connected.
Proof. In the exercises, it is shown that PBC_{n} is a join complex over PB_{n}. The other conditions for the previous theorem are also shown.

Definition 5.14. Let X be a simplicial complex. Define $X^{\text {ord }}=\left(X_{p}^{\text {ord }}\right)_{p \in \mathbb{N}_{0}}$ to be the Δ-complex whose p-simplices are

$$
X_{p}^{\mathrm{ord}}=\left\{\left(x_{0}, \ldots, x_{p}\right) \in X_{0}^{p+1} \mid\left\{x_{0}, \ldots, x_{p}\right\} \text { is a } p \text {-simplex in } X\right\}
$$

Proposition 5.15 (Randal-Williams-Wahl 2017). Let X be a simplicial complex that is weakly CohenMacaulay of dimension n then $X^{\text {ord }}$ is $(n-1)$-connected.

Proof. Exercise.
Corollary 5.16. $H S_{i}(M(0))_{n} \cong 0$ for all $n>2 i$.
Proof. Exercise.

