3 The homology of IA_{n}

We first recall how group homology is constructed. Let G be a group and M be a $\mathbb{Z} G$-module. Let $E_{*} G$ be a projective $\mathbb{Z} G$-resolution of the trivial representation. This is unique up to chain homotopy (exercise). Group homology $H_{i}(G ; M)$ is the homology of the chain complex

$$
E_{*} G \otimes_{G} M
$$

Group homology is functorial in the following sense. Let G and H be two groups and $\phi: G \rightarrow H$ be group homomorphism. Let M be a $\mathbb{Z} G$-module and N a $\mathbb{Z} H$-module. Through ϕ the module N can be considered as a $\mathbb{Z} G$-module that is denoted by $\phi^{*} N$. Let $\psi: M \rightarrow \phi^{*} N$ be a G-equivariant map. Let $\xi: E_{*} G \rightarrow \phi * E_{*} H$ be a G-equivariant map that induces the identity map on the trivial representation. Such a map exists and is unique up to chain homotopy because $E_{*} G$ is a projective resolution. Then

$$
E_{*} G \otimes_{G} M \xrightarrow{\xi \otimes \psi} E_{*} H \otimes_{H} N
$$

is a map of chain complexes and induces a homomorphism

$$
H_{*}(G ; M) \longrightarrow H_{*}(H ; N) .
$$

Let

$$
1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1
$$

be a short exact sequence of groups. Fix $g \in G$ and let $c_{g} \in \operatorname{Aut}(K)$ be the conjugation $c_{g}(k)=g k g^{-1}$. Let M be a $\mathbb{Z} G$-module. Then $\psi(m)=g m$ gives an K-equivariant map $\psi: \operatorname{Res}_{K}^{G} M \rightarrow \operatorname{Res}_{K}^{G} \phi^{*} M$. Similarly, $\xi(x)=x g^{-1}$ gives an K-equivariant map $\xi: \operatorname{Res}_{K}^{G} E_{*} G \rightarrow \operatorname{Res}_{K}^{G} \phi^{*} E_{*} G$. Therefore,

$$
\operatorname{Res}_{K}^{G} E_{*} G \otimes_{K} \operatorname{Res}_{K}^{G} M \xrightarrow{\xi \otimes \psi} \operatorname{Res}_{K}^{G} E_{*} G \otimes_{K} \operatorname{Res}_{K}^{G} M
$$

gives rise to an automorphism of $H_{*}(K ; M)$. Because K acts trivially by this action, $H_{*}(K ; M)$ is in fact a $\mathbb{Z} Q$-module.

Now consider the sequence of short exact sequences

$$
1 \rightarrow \mathrm{IA}_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{Z}) \rightarrow 1
$$

Then $\left(H_{*}\left(\mathrm{IA}_{n} ; \mathbb{Z}\right)\right)_{n \in \mathbb{N}_{0}}$ is a sequence of $\mathbb{Z} \mathrm{GL}_{n}(\mathbb{Z})-$ modules. The inclusion $\mathrm{IA}_{n} \subset \mathrm{IA}_{n+1}$ induces a $\mathrm{GL}_{n}(\mathbb{Z})-$ equivariant map

$$
\phi_{n}: H_{*}\left(\mathrm{IA}_{n} ; \mathbb{Z}\right) \longrightarrow H_{*}\left(\mathrm{IA}_{n+1} ; \mathbb{Z}\right)
$$

This data comes in fact from a $\mathrm{VIC}(\mathbb{Z})$-module, that we will denote by $H_{i}(\mathrm{IA})$ (exercise).
Let us concentrate now on $H_{1}(\mathrm{IA})$.
Theorem 3.1 (Andreadakis 1965 (for $n \leq 3$), Bachmuth 1966).

$$
H_{1}\left(\mathrm{IA}_{n}\right) \cong \operatorname{Hom}\left(\mathbb{Z}^{n}, \bigwedge^{2} \mathbb{Z}^{n}\right) \cong\left(\mathbb{Z}^{n}\right)^{*} \otimes \bigwedge^{2} \mathbb{Z}^{2}
$$

Proposition 3.2. There is a $\operatorname{VIC}(\mathbb{Z})$-module M given by $M_{n}=\left(\mathbb{Z}^{n}\right)^{*} \otimes \bigwedge^{2} \mathbb{Z}^{2}$ and

$$
\begin{aligned}
\phi_{n}:\left(\mathbb{Z}^{n}\right)^{*} \otimes \bigwedge^{2} \mathbb{Z}^{n+1} \longrightarrow\left(\mathbb{Z}^{n+1}\right)^{*} \otimes \bigwedge^{2} \mathbb{Z}^{n+1} \\
e_{i}^{*} \otimes\left(e_{j} \wedge e_{k}\right) \longmapsto e_{i}^{*} \otimes\left(e_{j} \wedge e_{k}\right),
\end{aligned}
$$

where e_{1}, \ldots, e_{m} denotes the standard basis of \mathbb{Z}^{m} and $e_{1}^{*}, \ldots, e_{m}^{*}$ its dual basis of $\left(\mathbb{Z}^{m}\right)^{*}$.
Corollary 3.3. The $\mathrm{VIC}(\mathbb{Z})$-module $H_{1}(\mathrm{IA})$ is isomorphic to M from the previous proposition.

