3 The homology of IA_n

We first recall how group homology is constructed. Let G be a group and M be a $\mathbb{Z}G$ -module. Let E_*G be a projective $\mathbb{Z}G$ -resolution of the trivial representation. This is unique up to chain homotopy (exercise). Group homology $H_i(G; M)$ is the homology of the chain complex

$$E_*G \otimes_G M.$$

Group homology is functorial in the following sense. Let G and H be two groups and $\phi: G \to H$ be group homomorphism. Let M be a $\mathbb{Z}G$ -module and N a $\mathbb{Z}H$ -module. Through ϕ the module N can be considered as a $\mathbb{Z}G$ -module that is denoted by ϕ^*N . Let $\psi: M \to \phi^*N$ be a G-equivariant map. Let $\xi: E_*G \to \phi * E_*H$ be a G-equivariant map that induces the identity map on the trivial representation. Such a map exists and is unique up to chain homotopy because E_*G is a projective resolution. Then

$$E_*G \otimes_G M \xrightarrow{\xi \otimes \psi} E_*H \otimes_H N$$

is a map of chain complexes and induces a homomorphism

$$H_*(G; M) \longrightarrow H_*(H; N).$$

Let

$$1 \to K \to G \to Q \to 1$$

be a short exact sequence of groups. Fix $g \in G$ and let $c_g \in \operatorname{Aut}(K)$ be the conjugation $c_g(k) = gkg^{-1}$. Let M be a $\mathbb{Z}G$ -module. Then $\psi(m) = gm$ gives an K-equivariant map ψ : $\operatorname{Res}_K^G M \to \operatorname{Res}_K^G \phi^* M$. Similarly, $\xi(x) = xg^{-1}$ gives an K-equivariant map ξ : $\operatorname{Res}_K^G E_*G \to \operatorname{Res}_K^G \phi^* E_*G$. Therefore,

$$\operatorname{Res}_{K}^{G} E_{*}G \otimes_{K} \operatorname{Res}_{K}^{G} M \xrightarrow{\xi \otimes \psi} \operatorname{Res}_{K}^{G} E_{*}G \otimes_{K} \operatorname{Res}_{K}^{G} M$$

gives rise to an automorphism of $H_*(K; M)$. Because K acts trivially by this action, $H_*(K; M)$ is in fact a $\mathbb{Z}Q$ -module.

Now consider the sequence of short exact sequences

$$1 \to \mathrm{IA}_n \to \mathrm{Aut}(F_n) \to \mathrm{GL}_n(\mathbb{Z}) \to 1.$$

Then $(H_*(\mathrm{IA}_n;\mathbb{Z}))_{n\in\mathbb{N}_0}$ is a sequence of $\mathbb{Z}\operatorname{GL}_n(\mathbb{Z})$ -modules. The inclusion $\mathrm{IA}_n \subset \mathrm{IA}_{n+1}$ induces a $\mathrm{GL}_n(\mathbb{Z})$ equivariant map

$$\phi_n \colon H_*(\mathrm{IA}_n; \mathbb{Z}) \longrightarrow H_*(\mathrm{IA}_{n+1}; \mathbb{Z}).$$

This data comes in fact from a $VIC(\mathbb{Z})$ -module, that we will denote by $H_i(IA)$ (exercise).

Let us concentrate now on $H_1(IA)$.

Theorem 3.1 (Andreadakis 1965 (for $n \leq 3$), Bachmuth 1966).

$$H_1(\mathrm{IA}_n) \cong \mathrm{Hom}(\mathbb{Z}^n, \bigwedge^2 \mathbb{Z}^n) \cong (\mathbb{Z}^n)^* \otimes \bigwedge^2 \mathbb{Z}^2$$

Proposition 3.2. There is a VIC(\mathbb{Z})-module M given by $M_n = (\mathbb{Z}^n)^* \otimes \bigwedge^2 \mathbb{Z}^2$ and

$$\phi_n \colon (\mathbb{Z}^n)^* \otimes \bigwedge^2 \mathbb{Z}^{n+1} \longrightarrow (\mathbb{Z}^{n+1})^* \otimes \bigwedge^2 \mathbb{Z}^{n+1}$$
$$e_i^* \otimes (e_j \wedge e_k) \longmapsto e_i^* \otimes (e_j \wedge e_k),$$

where e_1, \ldots, e_m denotes the standard basis of \mathbb{Z}^m and e_1^*, \ldots, e_m^* its dual basis of $(\mathbb{Z}^m)^*$.

Corollary 3.3. The VIC(\mathbb{Z})-module $H_1(IA)$ is isomorphic to M from the previous proposition.