Exercises

- 1.) Fill in the details about X_{pq} and Y_{pq} :
 - (a) Show that

$$Y_{pq} \cong CS_p(CS_q(M))_n \cong CS_q(CS_p(M))_n.$$

- (b) Those isomorphisms describe the differential in both p and q direction. Show that Y_{pq} is a double complex, i.e. that the two differentials commute.
- (c) Show that

$$X_{pq} \cong CS_p(CS_q(\Sigma^p M))_n \cong CS_q(CS_p(M(0)) \otimes M)_n$$

- (d) Those isomorphisms describe the differential in both p and q direction. Show that X_{pq} is a double complex, i.e. that the two differentials commute.
- 2.) We want to show that $d^1: \widehat{E}^1_{1,q} \to \widehat{E}^1_{0,q}$ is always zero. Find an isomorphism $\psi: \widehat{E}^0_{1,q} \to \widehat{E}^0_{0,q+1}$ that is a chain homotopy from the map of chain complexes $\widehat{E}^0_{1,*} \to \widehat{E}^0_{0,*}$ to the zero map.

For the remainder of the exercises, fix $r \in \mathbb{N}_0$, $d \in \mathbb{N}_0 \cup \{-\infty\}$, and $i \in \mathbb{N}_0$. Assume that

$$HS_q(N)_n \cong 0$$
 for all $n > \max(e+q, 2q+s)$

if N is a $VIC(\mathbb{Z})$ -module with polynomial degree $\leq s$ in ranks > e as long as s < r or q < i. Let M be a $VIC(\mathbb{Z})$ -module with polynomial degree $\leq r$ in ranks > d.

3. We want to prove that

$$\widehat{E}^1_{pq} \longrightarrow E^1_{pq}$$

is surjective for $n > \max(d + p + q - 1, p + 2q + r - 1)$ and injective for $n > \max(d + p + q, p + 2q + r + 1)$.

- (a) Prove that $\Sigma^p M$ has polynomial degree $\leq r$ in ranks > d p.
- (b) For $p \ge 1$, prove that $\ker(M \to \Sigma^p M)_n \cong 0$ for all n > d and $\operatorname{coker}(M \to \Sigma^p M)$ has polynomial degree r 1 in ranks > d 1. (Hint: Use Exercise 7.2a)
- (c) Use this information to show that

$$HS_q(M)_n \longrightarrow HS_q(\Sigma^p M)_n$$

is surjective for $n > \max(d+q-1, 2q+r-1)$ and injective for $n > \max(d+q, 2q+r+1)$.

- (d) Finish the proof.
- 4. Let us finish the proof of Theorem 7.5:
 - (a) Observe that $E_{0,i}^1 \cong HS_i(M)_n$.
 - (b) Use the previous exercises to show that $E_{0,i}^1 = E_{0,i}^2$ for $n > \max(d+i, 2i+r)$.
 - (c) Use the induction hypothesis to show that $E_{0,i}^2 = E_{0,i}^\infty$ for $n > \max(d+i-1, 2i+r)$. [Hint: Consider E_{pq}^1 for q < i, and p + q = i + 1.]
 - (d) Show that $E_{pq}^{\infty} \cong 0$ for n > 2(p+q) to finish the proof.