Exercises

1.) We want to compare different definitions of polynomial functors.
(a) Show that there is a $\operatorname{VIC}(\mathbb{Z})$-module that sends a finitely generated free \mathbb{Z}-module to its underlying abelian group that has polynomial degree ≤ 1 in ranks $>-\infty$.
(b) Show that there is a $\operatorname{VIC}(\mathbb{Z})$-module that sends a finitely generated free \mathbb{Z}-module to the dual of its underlying abelian group that has polynomial degree ≤ 1 in ranks $>-\infty$. (Here $\mathrm{GL}_{n}(\mathbb{Z})$ acts via its transpose.)
(c) Let $F: \mathrm{Ab} \rightarrow \mathrm{Ab}$ be a functor. Show that there is a functor $\mathrm{cr}_{1}(F): \mathrm{Ab} \rightarrow \mathrm{Ab}$ called the first cross effects of F such that $F(A)=F(0) \oplus \operatorname{cr}_{1}(F)(A)$ for all abelian groups A.
(d) Let $F: \mathrm{Ab} \rightarrow \mathrm{Ab}$ be a functor. Show that there is a functor $\mathrm{cr}_{2}(F): \mathrm{Ab} \times \mathrm{Ab} \rightarrow \mathrm{Ab}$ called the second cross effects of F such that $F(A \oplus B)=F(0) \oplus \operatorname{cr}_{1}(F)(A) \oplus \mathrm{cr}_{1}(F)(B) \oplus \mathrm{cr}_{2}(F)(A, B)$ for all pairs of abelian groups A, B.
(e) Let $\operatorname{VIC}(\mathbb{Z}) \rightarrow \mathrm{Ab}$ the functor that forgets about the complement. Let $F: \mathrm{Ab} \rightarrow \mathrm{Ab}$ be a functor whose second cross effects vanish. Consider F as a VIC (\mathbb{Z})-module. Show that it has polynomial degree ≤ 1 in ranks $>-\infty$.
(f) Prove that if a $\operatorname{VIC}(\mathbb{Z})$-module has polynomial degree $\leq r$ in ranks $>d$ then there is a polynomial $p \in \mathbb{Q}[X]$ such that rk $M_{n}=p(n)$ for all $n>d$.
2.) We want to show that H_{1} (IA) has polynomial degree ≤ 3 in ranks $>-\infty$.
(a) Let $M, M^{\prime}, M^{\prime \prime}$ be $\operatorname{VIC}(\mathbb{Z})$-modules and $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ morphisms such that

$$
0 \rightarrow M_{n}^{\prime} \rightarrow M_{n} \rightarrow M_{n}^{\prime \prime} \rightarrow 0
$$

is a short exact sequence for $n>d$. Prove that if N^{\prime} has polynomial degree $\leq r$ in ranks $>d$ and $N^{\prime \prime}$ has polynomial degree $\leq r$ in ranks $>d-1$, then N has polynomial degree $\leq r$ in ranks $>d$.
(b) Let M and N be $\operatorname{VIC}(\mathbb{Z})$-modules and assume that M has polynomial degree $\leq r$ in ranks $>d$ and N has polynomial degree $\leq s$ in ranks $>e$. Prove that $M \otimes N$ has polynomial degree $\leq r+s$ in ranks $>\max (d, e)$.
(c) Show that there is a $\operatorname{VIC}(\mathbb{Z})$-module M with $M_{n} \cong \operatorname{Hom}_{\mathrm{Ab}}\left(\mathbb{Z}^{n}, \bigwedge^{2} \mathbb{Z}^{n}\right)$ that has polynomial degree ≤ 3 in ranks $>-\infty$.
(d) Show that M coincides with the $\operatorname{VIC}(\mathbb{Z})$-module $H_{1}(\mathrm{IA})$.

