Exercises

- 1.) We want to compare different definitions of polynomial functors.
 - (a) Show that there is a $VIC(\mathbb{Z})$ -module that sends a finitely generated free \mathbb{Z} -module to its underlying abelian group that has polynomial degree ≤ 1 in ranks $> -\infty$.
 - (b) Show that there is a $VIC(\mathbb{Z})$ -module that sends a finitely generated free \mathbb{Z} -module to the dual of its underlying abelian group that has polynomial degree ≤ 1 in ranks $> -\infty$. (Here $GL_n(\mathbb{Z})$ acts via its transpose.)
 - (c) Let $F: Ab \to Ab$ be a functor. Show that there is a functor $cr_1(F): Ab \to Ab$ called the first cross effects of F such that $F(A) = F(0) \oplus cr_1(F)(A)$ for all abelian groups A.
 - (d) Let $F: Ab \to Ab$ be a functor. Show that there is a functor $\operatorname{cr}_2(F): Ab \times Ab \to Ab$ called the second cross effects of F such that $F(A \oplus B) = F(0) \oplus \operatorname{cr}_1(F)(A) \oplus \operatorname{cr}_1(F)(B) \oplus \operatorname{cr}_2(F)(A, B)$ for all pairs of abelian groups A, B.
 - (e) Let VIC(Z) → Ab the functor that forgets about the complement. Let F: Ab → Ab be a functor whose second cross effects vanish. Consider F as a VIC(Z)-module. Show that it has polynomial degree ≤ 1 in ranks > -∞.
 - (f) Prove that if a $\mathsf{VIC}(\mathbb{Z})$ -module has polynomial degree $\leq r$ in ranks > d then there is a polynomial $p \in \mathbb{Q}[X]$ such that $\mathrm{rk} M_n = p(n)$ for all n > d.
- 2.) We want to show that $H_1(IA)$ has polynomial degree ≤ 3 in ranks $> -\infty$.
 - (a) Let M, M', M'' be $\mathsf{VIC}(\mathbb{Z})$ -modules and $M' \to M \to M''$ morphisms such that

$$0 \to M'_n \to M_n \to M''_n \to 0$$

is a short exact sequence for n > d. Prove that if N' has polynomial degree $\leq r$ in ranks > d and N" has polynomial degree $\leq r$ in ranks > d - 1, then N has polynomial degree $\leq r$ in ranks > d.

- (b) Let M and N be $\mathsf{VIC}(\mathbb{Z})$ -modules and assume that M has polynomial degree $\leq r$ in ranks > d and N has polynomial degree $\leq s$ in ranks > e. Prove that $M \otimes N$ has polynomial degree $\leq r + s$ in ranks $> \max(d, e)$.
- (c) Show that there is a $VIC(\mathbb{Z})$ -module M with $M_n \cong Hom_{Ab}(\mathbb{Z}^n, \bigwedge^2 \mathbb{Z}^n)$ that has polynomial degree ≤ 3 in ranks $> -\infty$.
- (d) Show that M coincides with the $VIC(\mathbb{Z})$ -module $H_1(IA)$.