Exercises

1.) Given an abstract simplicial complex, find an abstract Δ-complex with the same realization.
2.) In this exercise, we want to show that PB_{n} is weakly Cohen-Macaulay of dimension $n-1$, following a proof by Church-Putman 2017.
(a) Let V be a summand of \mathbb{Z}^{n} and v_{0}, \ldots, v_{p} a basis of V. Observe that $\operatorname{Lk}_{\operatorname{PB}_{n}}\left(\left\{v_{0}, \ldots, v_{p}\right\}\right)$ is independent of the choice of basis of V. Denote this link by $\mathrm{Lk}_{\mathrm{PB}_{n}}(V)$.
(b) Let $\mathrm{PB}_{n}^{m}=\mathrm{Lk}_{\mathrm{PB}_{n+m}}\left(\mathbb{Z}^{m}\right)$. Show that $\operatorname{Lk}_{\mathrm{PB}_{n}^{m}}(\sigma) \cong \mathrm{PB}_{n-p}^{m+p}$ for every $(p-1)$-simplex σ of PB_{n}^{m}.
(c) Fix an $F: \mathbb{Z}^{m+n} \rightarrow \mathbb{Z}$ and $N>0$. For a subcomplex X of PB_{n}^{m}, define $X^{<N}$ to be the full subcomplex of X spanned by the vertices v with $|F(v)|<N$. Let σ be a simplex of PB_{n}^{m} that has a vertex v with $F(v)=N$. Show that $\operatorname{Lk}_{\mathrm{PB}_{n}^{m}}(\sigma)$ can be retracted to $\operatorname{Lk}_{\mathrm{PB}_{n}^{m}}(\sigma)^{<N}$.
(d) We will prove that PB_{n}^{m} is $(n-2)$-connected by induction over n. For $n=0$ there is nothing to show. For $n=1$, prove that PB_{1}^{m} is non-empty for $m \geq 0$.
(e) For the induction step, fix a map $\phi: S^{p} \rightarrow \mathrm{~PB}_{n}^{m}$ with $0 \leq p \leq n-2$. (We may assume that there is a triangulation of S^{p} such ϕ is simplicial.) We want to nullhomtope ϕ. Let $F: \mathbb{Z}^{m+n} \rightarrow \mathbb{Z}$ be the map that returns the last coordinate and let

$$
R(\phi)=\max \left(F(v) \mid v \text { a vertex of } \mathrm{PB}_{n}^{m} \text { in the image of } \phi\right)
$$

Show that the sphere can be coned off if $R(\phi)=0$.
(f) If $R=R(\phi)>0$ then there is a simplex σ of S^{p} of maximal dimension (with respect to the following condition) such that $F(\phi(x))=R$ for all $x \in \sigma$. Check that $\phi \operatorname{maps}^{L_{\S^{p}}}(\sigma)$ into $\operatorname{Lk}_{\mathrm{PB}_{n}^{m}}(\phi(\sigma))^{<R}$.
(g) Assume that σ is k-dimensional. Show that $\mathrm{Lk}_{\S^{p}}(\sigma)$ homeomorphic to S^{p-k-1}.
(h) Assume that $\phi(\sigma)$ is ℓ-dimensional. (Note that $k \geq \ell$.) Prove that $\mathrm{Lk}_{\mathrm{PB}_{n}^{m}}(\phi(\sigma))^{<R}$ is $(n-\ell-3)-$ connected.
(i) Homotope ϕ to replace $\phi(\sigma)$ by a subcomplex in $\operatorname{Lk}_{\operatorname{PB}_{n}^{m}}(\sigma)^{<N}$.
(j) Observe that we can get reduce $R(\phi)$ this way. And finish the proof.
3.) Show that the link of a simplex in PBC_{n} is isomorphic to a PBC_{m} for some $m \leq n$.
4.) Show that PBC_{n} is a join complex over PB_{n} by the map π that forgets the complement.
5.) Let τ be a p-simplex of PBC_{n}. Show that $\mathrm{Lk}_{\mathrm{PB}_{n}}(\phi(\tau))$ is weakly Cohen-Macaulay of dimension $n-p-3$.
6.) Use Proposition 5.15 and the previous exercise to show that $H S_{i}(M(0))_{n} \cong 0$ for $n>2 i$.

