Exercises

- 1.) Given an abstract simplicial complex, find an abstract Δ -complex with the same realization.
- 2.) In this exercise, we want to show that PB_n is weakly Cohen–Macaulay of dimension n 1, following a proof by Church–Putman 2017.
 - (a) Let V be a summand of \mathbb{Z}^n and v_0, \ldots, v_p a basis of V. Observe that $\operatorname{Lk}_{\operatorname{PB}_n}(\{v_0, \ldots, v_p\})$ is independent of the choice of basis of V. Denote this link by $\operatorname{Lk}_{\operatorname{PB}_n}(V)$.
 - (b) Let $\operatorname{PB}_n^m = \operatorname{Lk}_{\operatorname{PB}_{n+m}}(\mathbb{Z}^m)$. Show that $\operatorname{Lk}_{\operatorname{PB}_n^m}(\sigma) \cong \operatorname{PB}_{n-p}^{m+p}$ for every (p-1)-simplex σ of PB_n^m .
 - (c) Fix an $F: \mathbb{Z}^{m+n} \to \mathbb{Z}$ and N > 0. For a subcomplex X of PB_n^m , define $X^{< N}$ to be the full subcomplex of X spanned by the vertices v with |F(v)| < N. Let σ be a simplex of PB_n^m that has a vertex v with F(v) = N. Show that $\mathrm{Lk}_{\mathrm{PB}_n^m}(\sigma)$ can be retracted to $\mathrm{Lk}_{\mathrm{PB}_n^m}(\sigma)^{< N}$.
 - (d) We will prove that PB_n^m is (n-2)-connected by induction over n. For n = 0 there is nothing to show. For n = 1, prove that PB_1^m is non-empty for $m \ge 0$.
 - (e) For the induction step, fix a map $\phi: S^p \to \mathrm{PB}_n^m$ with $0 \leq p \leq n-2$. (We may assume that there is a triangulation of S^p such ϕ is simplicial.) We want to nullhomtope ϕ . Let $F: \mathbb{Z}^{m+n} \to \mathbb{Z}$ be the map that returns the last coordinate and let

 $R(\phi) = \max(F(v) \mid v \text{ a vertex of } \mathrm{PB}_n^m \text{ in the image of } \phi).$

Show that the sphere can be coned off if $R(\phi) = 0$.

- (f) If $R = R(\phi) > 0$ then there is a simplex σ of S^p of maximal dimension (with respect to the following condition) such that $F(\phi(x)) = R$ for all $x \in \sigma$. Check that ϕ maps $\operatorname{Lk}_{\mathbb{S}^p}(\sigma)$ into $\operatorname{Lk}_{\operatorname{PB}_n^m}(\phi(\sigma))^{< R}$.
- (g) Assume that σ is k-dimensional. Show that $Lk_{\xi^p}(\sigma)$ homeomorphic to S^{p-k-1} .
- (h) Assume that $\phi(\sigma)$ is ℓ -dimensional. (Note that $k \ge \ell$.) Prove that $\operatorname{Lk}_{\operatorname{PB}_n^m}(\phi(\sigma))^{< R}$ is $(n \ell 3)$ -connected.
- (i) Homotope ϕ to replace $\phi(\sigma)$ by a subcomplex in $Lk_{PB_m}(\sigma)^{\leq N}$.
- (j) Observe that we can get reduce $R(\phi)$ this way. And finish the proof.
- 3.) Show that the link of a simplex in PBC_n is isomorphic to a PBC_m for some $m \leq n$.
- 4.) Show that PBC_n is a join complex over PB_n by the map π that forgets the complement.
- 5.) Let τ be a *p*-simplex of PBC_n. Show that $Lk_{PB_n}(\phi(\tau))$ is weakly Cohen-Macaulay of dimension n-p-3.
- 6.) Use Proposition 5.15 and the previous exercise to show that $HS_i(M(0))_n \cong 0$ for n > 2i.