Exercises

1.) Show that $C S_{*}(M)_{n}$ together with ∂ is a chain complex.
2.) A semi-simplicial set is a sequence of sets $\left(X_{p}\right)_{p \in \mathbb{N}_{0}}$ together with maps $d_{i}: X_{p} \rightarrow X_{p-1}$ for $i=0, \ldots, p$ such that $d_{i} \circ d_{j}=d_{j-1} \circ d_{i}$ for all pairs $i<j$.
(a) Show that every semi-simplicial set is isomorphic to a set of the form, where $X_{p} \subset X_{0}^{p+1}$ and $d_{i}: X_{p} \rightarrow X_{p-1}$ will drop the $(i-1)$ th entry from the sequence.
(b) Check that $W_{p}(n)=\operatorname{Hom}_{\operatorname{VIC}(\mathbb{Z})}\left(\mathbb{Z}^{p+1}, \mathbb{Z}^{n}\right)$ gives a semi-simplicial set.
(c) The simplicial chain complex of a semi-simplicial set X is given by $C_{p}(X)=\mathbb{Z} X_{p}$ and $\partial=\sum(-1)^{i} d_{i}$. Check that $C_{*}(W(n)) \cong C S_{*-1}(M(0))_{n}$.
3.) This exercise shall show that central stability homology gives bounds on the generation degree of syzygies. You may use that $H S_{i}(M(0))_{n}=0$ for all $n>2 i$.
(a) Observe that a $\operatorname{VIC}(\mathbb{Z})$-module M is generated in degrees $\leq d$ if and only if $H S_{0}(M)_{n}=0$ for all $n>d$.
(b) Show $H S_{i}(M(m))_{n}=0$ for all $n>2 i+m$.
(c) Let $d_{0}, \ldots, d_{N} \in \mathbb{N}_{0}$ with $d_{i+1}-d_{i} \geq 2$ and

$$
P_{N} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

be a resolution of free $\operatorname{VIC}(\mathbb{Z})-$ modules P_{i} generated in degrees $\leq d_{i}$. Show that $H S_{i}(M)_{n}=0$ for all $n>d_{i}$.
(d) Let d_{i} be as above and $H S_{i}(M)_{n} \cong 0$ for all $n>d_{i}$. Show that there exists a partial resolution

$$
P_{N} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

of free $\operatorname{VIC}(\mathbb{Z})$-modules P_{i} generated in degrees $\leq d_{i}$.

