Exercises

1.) Prove that $\operatorname{End}_{\operatorname{VIC}(R)}\left(R^{n}\right)=\operatorname{Aut}_{\mathrm{VIC}(R)}\left(R^{n}\right) \cong \mathrm{GL}_{n}(R)$.
2.) Show that $\operatorname{Hom}_{\operatorname{VIC}(R)}\left(R^{m}, R^{n}\right) \cong \mathrm{GL}_{n}(R) / \mathrm{GL}_{n-m}(R)$ as a $\mathrm{GL}_{n}(R)$-set.
3.) Let $F: \operatorname{VIC}(R) \rightarrow \mathrm{Ab}$ be a functor.
(a) Show that $M_{n}:=F\left(R^{n}\right)$ is a $\mathrm{GL}_{n}(R)-$ representation.
(b) Show that $(f, C) \in \operatorname{Hom}_{\operatorname{VIC}(R)}\left(R^{n}, R^{n+1}\right)$ given by $f\left(e_{i}\right)=e_{i}$ for $1 \leq i \leq n$ and $C=\operatorname{span}\left(e_{n+1}\right)$ induces a $\mathrm{GL}_{n}(R)$-equivariant $\operatorname{map} \phi_{n}: M_{n} \rightarrow M_{n+1}$.
(c) Show that $\mathrm{GL}_{m}(R)$ included into $\mathrm{GL}_{n+m}(R)$ by the block inclusion

$$
A \mapsto\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right)
$$

acts trivially on the image of the composition

$$
M_{n} \xrightarrow{\phi_{n}} M_{n+1} \xrightarrow{\phi_{n+1}} \ldots \xrightarrow{\phi_{n+m-1}} M_{n+m} .
$$

(d) Conversely, let $\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of $\mathrm{GL}_{n}(R)$-representations and let there be $\mathrm{GL}_{n}(R)-$ equivariant maps $\phi_{n}: M_{n} \rightarrow M_{n+1}$. If $\mathrm{GL}_{m}(R)$ acts trivially on the image of the composition $M_{n} \rightarrow M_{n+m}$, there is a $\operatorname{VIC}(R)-$ module $F: \operatorname{VIC}(R) \rightarrow \mathrm{Ab}$ such that $F\left(R^{n}\right)=M_{n}$ and $(f, C) \in$ $\operatorname{Hom}_{\mathrm{VIC}(R)}\left(R^{n}, R^{n+1}\right)$ given by $f\left(e_{i}\right)=e_{i}$ for $1 \leq i \leq n$ and $C=\operatorname{span}\left(e_{n+1}\right)$ induces $\phi_{n}: M_{n} \rightarrow$ M_{n+1}.
4.) Let $M(m):=\mathbb{Z} \operatorname{Hom}_{\operatorname{VIC}(R)}\left(R^{m},-\right)$ define a free $\operatorname{VIC}(R)$-module.
(a) Show that $M(m)$ is generated by one element.
(b) Show that $\operatorname{Hom}_{\operatorname{VIC}(R)-\bmod }(M(m), M) \cong M_{m}$.
(c) Show that if M is generated in degrees $\leq d$, there is a set I, numbers $m_{i} \leq d$ for $i \in I$ and a surjection $\bigoplus_{i \in I} M\left(m_{i}\right) \rightarrow M$.
5.) The following functors from VIC (R)-modules can be considered forgetful functors. Find their left adjoints.
(a) Fix $m \in \mathbb{N}_{0}$. Let $\operatorname{VIC}(R)-\bmod \rightarrow$ Set be the functor sending M to the underlying set of M_{m}.
(b) Let $\operatorname{VIC}(R)-\bmod \rightarrow \operatorname{Set}^{\mathbb{N}_{0}}$ be the functor sending M to the sequence of underlying sets of $\left(M_{m}\right)_{m \in \mathbb{N}_{0}}$.
(c) Fix $m \in \mathbb{N}_{0}$. Let $\operatorname{VIC}(R)-\bmod \rightarrow \mathrm{GL}_{m}(R)$ - Set be the functor sending M to the underlying $\mathrm{GL}_{m}(R)$-set of M_{m}.
(d) Let $\operatorname{VIC}(R)-\bmod \rightarrow \prod_{m \in \mathbb{N}_{0}} \mathrm{GL}_{m}(R)--$ Set be the functor sending M to the sequence of underlying $\mathrm{GL}_{m}(R)$-sets of $\left(M_{m}\right)_{m \in \mathbb{N}_{0}}$.
(e) Fix $m \in \mathbb{N}_{0}$. Let $\operatorname{VIC}(R)-\bmod \rightarrow \mathrm{Ab}$ be the functor sending M to the underlying abelian group M_{m}.
(f) Let $\operatorname{VIC}(R)-\bmod \rightarrow \mathrm{Ab}^{\mathbb{N}_{0}}$ be the functor sending M to the sequence of underlying abelian groups $\left(M_{m}\right)_{m \in \mathbb{N}_{0}}$.
(g) Fix $m \in \mathbb{N}_{0}$. Let $\operatorname{VIC}(R)-\bmod \rightarrow \mathrm{GL}_{m}(R)-\bmod$ be the functor sending M to the $\mathrm{GL}_{m}(R)-$ representation M_{m}.
(h) Let $\operatorname{VIC}(R)-\bmod \rightarrow \prod_{m \in \mathbb{N}_{0}} \mathrm{GL}_{m}(R)-\bmod$ be the functor sending M to the sequence of $\mathrm{GL}_{m}(R)-$ modules $\left(M_{m}\right)_{m \in \mathbb{N}_{0}}$.

