Exercises

- 1.) The free group: Let S be a set and S^{-1} the symbols of inverses of S. Adding and removing ss^{-1} or $s^{-1}s$ for $s \in S$ defines an equivalence relation on the set of words of $S \cup S^{-1}$. The free group F_S is the set of equivalence classes with concatenation as group multiplication.
 - (a) Prove that in every equivalence class there is exactly one fully canceled word, i.e. one word that doesn't contain an ss^{-1} or $s^{-1}s$ for $s \in S$.
 - (b) Prove that F_S is a group.
 - (c) Prove the universal property of F_S : Let G be a group. For every set map $f: S \to G$, there is a unique group homomorphism $F_S \to G$ extending f.
- 2.) The generators of Aut(F_n): Let $S = \{x_1, \ldots, x_n\}$ and denote F_S by F_n . A group homomorphism $f: F_n \to F_n$ is given by the images $f(x_1), \ldots, f(x_n)$. Define the *length* |f| of f be the sum of the lengths of (the completely canceled words) $f(x_i)$.
 - (a) Prove that $|f| \ge n$ if $f \in Aut(F_n)$.
 - (b) Observe that every permutation $\sigma \in S_n$ defines an automorphism $x_i \mapsto x_{\sigma(i)}$.
 - (c) Let inv_i be the automorphism of F_n defined by $x_j \mapsto x_j$ for $j \neq i$ and $x_i \mapsto x_i^{-1}$. Prove that if |f| = n and $f \in \operatorname{Aut}(F_n)$, then f is generated by permutations and inv_1 .
 - (d) Let $\operatorname{leftmul}_{ij}$ be the automorphism of F_n defined by $x_k \mapsto x_k$ for $k \neq j$ and $x_j \mapsto x_i x_j$. Let rightmul_{ij} be the automorphism of F_n defined by $x_k \mapsto x_k$ for $k \neq j$ and $x_j \mapsto x_j x_i$. Observe that the permutations, inv₁, and leftmul₁₂ generate all leftmul_{ij} and rightmul_{ij}.
 - (e) Let f be an automorphism of F_n with |f| > n. Let w_i, w'_i be the reduced words defined by $f(x_i), f^{-1}(x_i)$, resp. By replacing the x_i 's in w'_j with w_i , we get a word that cancels to x_j . Observe that if $|w'_j| > 1$, one of the $w_i^{\pm 1}$ must be completely canceled only by its neighbors.
 - (f) If a $w_i^{\pm 1}$ is canceled completely by its neighbors where one neighbor cancels more letters than the other, use leftmul_{ij} or rightmul_{ij} to reduce the length of f.
 - (g) If all $w_i^{\pm 1}$ that are canceled completely by its neighbors are canceled exactly in the middle, let $w_i^{\pm 1}$ be one of these with minimal length and let $w_i^{\pm 1} = ab$ with |a| = |b|, use leftmul_{ij} or rightmul_{ij} to replace b^{-1} 's in the beginning and b's in the end of a w_j by a's and a^{-1} respectively. Prove that this can only be done finitely many times before the length of f can be reduced using (f).
 - (h) Conclude that there is a four element generator set of $\operatorname{Aut}(F_n)$.
- 3.) Prove that abelianizing is functorial. That means it is a functor from the category of groups to the category of abelian groups. Most importantly, for group homomorphisms $G \to H$, there exist homomorphisms between the abelianizations that behave well under composition.
- 4.) Prove the universal property of the abelianization: Let G be a group and A be an abelian group. Every group homomorphism $G \to A$ factors uniquely through the abelianization of G.
- 5.) Show that the abelianization of F_n is \mathbb{Z}^n .
- 6.) Observe that the group of group automorphisms of \mathbb{Z}^n is precisely $\operatorname{GL}_n(\mathbb{Z})$.