HOMOLOGICAL ALGEBRA

This document is about abelian groups and R-modules, but we will later see that everything makes sense with abelian groups replaced by objects from an "abelian category."

Suppose we have a short exact sequence

(1)
$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0,$$

so that f is an injection, g is a surjection, and ker $g = \operatorname{im} f$.

- 1. Show that f is an isomorphism if and only if C = 0, and similarly that A = 0 if and only if g is an isomorphism.
- 2. Show that B = 0 if and only if A and C are zero.
- 3. Show that B is not always determined up-to-isomorphism by A and C. That is, show that there exist A, C, B, and B' with B not isomorphic to B' so that

$$0 \to A \to B \to C \to 0$$

and

$$0 \to A \to B' \to C \to 0$$

are both exact sequences.

4. To ponder: Given A and C, what choices are there for f, B, and g? This is called the "extension problem" for A and C.

Definition 0.1. A module P is called **projective** if the functor Hom(P, -) is exact, so that the sequence

$$0 \to \operatorname{Hom}(P,A) \xrightarrow{\operatorname{Hom}(P,f)} \operatorname{Hom}(P,B) \xrightarrow{\operatorname{Hom}(P,g)} \operatorname{Hom}(P,C) \to 0$$

is still exact as a sequence of abelian groups.

- 5. Show that X and Y are projective exactly when $X \oplus Y$ is projective.
- 6. Show that the abelian group \mathbb{Z} is projective, and deduce the same for \mathbb{Z}^n .
- 7. Show that if P is projective, then any surjection $p: A \to P$ admits a map $i: P \to A$ with $p \circ i = 1_P$. The surjection p is then said to be "split" and i is called a "splitting."
- 8. Returning to (1), show that if C is projective, then $B \cong A \oplus C$, and so the extension problem is easy in this case.

The next problems indicate some of the interest in non-free projective modules, indicating a connection to K-theory. Let $S^1 = [0,1]/(0 \sim 1)$ be the circle, and let R be the ring of continuous functions $S^1 \to \mathbb{R}$.

- 9. Show that $M = \{f : [0,1] \to \mathbb{R} \mid f(0) = -f(1)\}$ is an *R*-module.
- 10. Using the intermediate value theorem, show that M is not free.
- 11. Find a continuous path $\gamma: [0,1] \to \operatorname{GL}(2,\mathbb{R})$ with $\gamma(0) = I$ and $\gamma(1) = -I$.
- 12. Show that $M \oplus M \cong R \oplus R$, and conclude that M is projective.
- 13. Find a two-by-two matrix $\pi \in M_2(R)$ so that $\pi \pi = \pi$ (this condition gives us the word "projective"), π has rank one when its entries are evaluated at any point $t \in S^1$,

but π is not conjugate to

```
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
```

under the action of GL(2, R).

An **injective module** I is one for which the contravariant representable functor Hom(-, I) is exact.

- 14. If k is a field, show that k is injective as a k-module.
- 15. Is \mathbb{Z} an injective abelian group?
- 16. Show that $\mathbb{Z}/2$ is injective as a $\mathbb{Z}/2$ -module, but not as an abelian group.
- 17. Let \mathbb{Q} denote the group rational numbers with addition. Show that the quotient group \mathbb{Q}/\mathbb{Z} is an injective abelian group. Is this group indecomposable?
- 18. Find a nonzero injective $\mathbb{Z}[x]$ -module.

Definition 0.2. A chain complex is a sequence of modules $C_{\bullet} = \{C_n : n \in \mathbb{Z}\}$ together with homomorphisms $d_n: C_n \to C_{n-1}$, called **differentials** or **boundary maps**, satisfying $d_n \circ d_{n+1} = 0$ for all $n \in \mathbb{Z}$. The kernel of d_n is the module of *n*-cycles of C_{\bullet} , written $Z_n(C_{\bullet})$, and the image of d_{n+1} is the module of *n*-boundaries of C_{\bullet} , written $B_n(C_{\bullet})$. The *n*th homology of C_{\bullet} is the quotient $H_n(C_{\bullet}) = Z_n(C_{\bullet})/B_n(C_{\bullet})$.

A cochain complex is a sequence of module $C^{\bullet} = \{C^n : n \in \mathbb{Z}\}$ together with homomorphisms $d^n : C^n \to C^{n+1}$ called differentials or coboundary maps, satisfying $d^{n+1} \circ d^n = 0$ for all $n \in \mathbb{Z}$.

- 19. Set $C_n = \mathbb{Z}/9\mathbb{Z}$ for all $n \ge 0$ and $C_n = 0$ for all n < 0. Moreover, define $d_n : C_n \to C_{n-1}$ by $d_n(x) = 3x$. Prove that C_{\bullet} is a complex of $\mathbb{Z}/9\mathbb{Z}$ -modules and compute its homology.
- 20. Write the definition of the *n*th cohomology of a cochain complex C^{\bullet} . Hint: translate the definition of homology to cochain complexes.

Definition 0.3. A chain map between two chain complexes $(C_{\bullet}, d_{C,\bullet})$ and $(D_{\bullet}, d_{D,\bullet})$ is a sequence of homomorphisms $f_n: C_n \to D_n$ that satisfy $d_{D,n} \circ f_n = f_{n-1} \circ d_{C,n}$ for all $n \in \mathbb{Z}$.

- 21. Prove that if $f: C_{\bullet} \to D_{\bullet}$ is a chain map, then $f_n(Z_n(C_{\bullet})) \subseteq Z_n(D_{\bullet})$ and $f_n(B_n(C_{\bullet})) \subseteq B_n(D_{\bullet})$ for all $n \in \mathbb{Z}$.
- 22. Prove that for each $n \in \mathbb{Z}$ H_n is a functor from Ch(Ab), the category of chain complexes of abelian groups with chain maps, to Ab.

Let S be a commutative ring. The category Ch(S - Mod) is an abelian category, and therefore contains exact sequences.

Definition 0.4. A left resolution of an S-module M is an exact sequence of S-modules

$$\dots \xrightarrow{d_{n+1}} E_n \xrightarrow{d_n} \dots \xrightarrow{d_2} E_1 \xrightarrow{d_1} E_0 \xrightarrow{\varepsilon} M \to 0.$$

The homomorphisms d_n are called **boundary maps**, and the homomorphism ε is called the **augementation map**. For succinctness, we often write left resolutions as

$$E_{\bullet} \xrightarrow{\varepsilon} M \to 0.$$

A right resolution of an S-module M is an exact sequence of S-modules

 $0 \to M \xrightarrow{\varepsilon} D_0 \xrightarrow{d^0} D_1 \xrightarrow{d^1} \dots \xrightarrow{d^{n-1}} D_n \xrightarrow{d^n} \dots$

For succinctness, we often write right resolutions as

$$0 \to M \xrightarrow{\varepsilon} C_{\bullet}.$$

If all the E_n are free modules, then we say that $E_{\bullet} \xrightarrow{\varepsilon} M \to 0$ is a **free resolution**, and if all the E_n are projective modules, then we say that $E_{\bullet} \xrightarrow{\varepsilon} M \to 0$ is a **projective resolution**. If all the C_n are injective modules, then we say that $0 \to M \xrightarrow{\varepsilon} C_{\bullet}$ is an **injective resolution**.

23. Show that every S-module M has a surjection from a (possibly infinite) direct sum of copies of S. What does this say about the existence of a free resolution of M?

Definition 0.5. A quasi-isomorphism of chain complexes is a chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ so that $f_n: H_n(C_{\bullet}) \to H_n(D_{\bullet})$ is an isomorphism for all $n \in \mathbb{Z}$.

- 24. For any S-module M, find a chain complex of free S-modules C_{\bullet} so that $H_0C_{\bullet} \cong M$ and $H_pC_{\bullet} = 0$ otherwise. Probably you will want to pick $C_p = 0$ for p < 0.
- 25. Find a quasi-isomorphism from C_{\bullet} to the complex $\ldots \to 0 \to M \to 0 \to \ldots$
- 26. If X_• is a projective resolution of an S-module A and Z_• is a projective resolution of an S-module C, and if these objects sit in a short exact sequence 0 → A → B → C → 0, find a projective resolution Y_• of B so that 0 → X_• → Y_• → Z_• → 0 is a short exact sequence of chain complexes whose degree-zero homology recovers the original sequence.
- 27. Let

$$0 \to X_{\bullet} \xrightarrow{f} Y_{\bullet} \xrightarrow{g} Z_{\bullet} \to 0$$

be a short exact sequence of chain complexes. Show that $X_{n-1} \oplus Y_n$ with differential $d(x,y) = d(x) + (-1)^n f(x) + d(y)$ is quasi-isomorphic to Z_{\bullet} . Call this complex $M(f)_{\bullet}$; it is the **mapping cone** of f.

Given a chain complex X_{\bullet} , for any $k \in \mathbb{Z}$ we have the shifted complex $X[k]_{\bullet}$, with $X[k]_n = X_{n+k}$ for all $n \in \mathbb{Z}$.

- 28. Show that Y_{\bullet} is a subcomplex of M(f) and $X[-1]_{\bullet}$ is a quotient complex.
- 29. Using the maps $X_{\bullet} \xrightarrow{f} Y_{\bullet} \subseteq M(f)_{\bullet} \twoheadrightarrow X[-1]_{\bullet} \xrightarrow{-f[-1]} Y[-1]_{\bullet}$, construct an exact sequence

$$H_n X \to H_n Y \to H_n Z \to H_{n-1} X \to H_{n-1} Y.$$

Theorem 0.6. If $0 \to X_{\bullet} \xrightarrow{f} Y_{\bullet} \xrightarrow{g} Z_{\bullet} \to 0$ is a short exact sequence of chain complexes, then there are natural maps $\partial \colon H_n(Z_{\bullet}) \to H_{n-1}(X_{\bullet})$ and a long exact sequence

$$\dots \xrightarrow{g} H_{n+1}(Z_{\bullet}) \xrightarrow{\partial} H_n(X_{\bullet}) \xrightarrow{f} H_n(Y_{\bullet}) \xrightarrow{g} H_n(Z_{\bullet}) \xrightarrow{\partial} H_{n-1}(X_{\bullet}) \xrightarrow{f} \dots$$

Definition 0.7. Let \mathcal{F} be a right exact functor from S-Mod to R-Mod¹ (where R and S are both commutative unital rings). We can construct the **left derived functors of** \mathcal{F} , $L_i\mathcal{F}$ $(i \geq 0)$, as follows. For each S-module, M, choose a projective resolution $P_{\bullet} \to M \to 0$ and define

$$L_i\mathcal{F}(M) = H_i(\mathcal{F}(P_\bullet)).$$

¹A right exact functor is a functor that preserves right exact sequences.

Let \mathcal{G} be a left exact functor from S-Mod to R-Mod. We can construct the **right derived functors** of \mathcal{G} , $R^{j}\mathcal{G}$ $(j \geq 0)$, as follows. For each S-module M, choose an injective resolution $0 \to M \to I_{\bullet}$ and define

$$R^{j}\mathcal{G}(M) = H^{j}(\mathcal{G}(I_{\bullet})).$$

- 30. Prove that if P_{\bullet} and Q_{\bullet} are two different projective resolutions of an S-module M, then $H_i(\mathcal{F}(P_{\bullet})) \cong H_i(\mathcal{F}(Q_{\bullet}))$, thus proving that our definition of left-derived functors is well-defined. (This exercise is a little challenging and requires the use of a "chain homotopy".)
- 31. Prove that for any S-module M, $L_0\mathcal{F}(M) \cong \mathcal{F}(M)$.
- 32. Prove the exercises analogous to Problems 30 and 31 for right derived functors.

Definition 0.8. If R is a ring, and if M_R , $_RN$ are modules with opposite-sided actions, the **tensor product** is an abelian group defined by the formula

$$M \otimes_R N = \mathbb{Z} \cdot (M \times N) / \sim$$

where \sim is generated by the relations

for all $m, m' \in M$, $n, n' \in N$, and $r \in R$. The equivalence class of $1 \cdot (m, n) \in \mathbb{Z} \cdot (M \times N)$ is written $m \otimes_R n$, or even just $m \otimes n$.

We mention that, in the definition, $\mathbb{Z} \cdot (M \times N)$ denotes the free abelian group on the set $M \times N$, even though this set carries the structure of an abelian group. This is intentional. In the tensor product, we definitely do not want $(m + m') \otimes (n + n') = (m \otimes n) + (m' \otimes n')$, even though (m + m', n + n') = (m, n) + (m', n') does hold in $M \times N$. Rather, in the tensor product,

$$(m+m') \otimes (n+n') = m \otimes (n+n') + m' \otimes (n+n')$$
$$= (m \otimes n) + (m \otimes n') + (m' \otimes n) + (m' \otimes n').$$

In other words, the symbol \otimes is meant to be **bilinear**, like an inner product, or like matrix multiplication.

- 33. Prove that $R \otimes_R N \cong N$.
- 34. By symmetry, conclude that $M \otimes_R R \cong M$ as well.
- 35. Given another left *R*-module $_RN'$, show that $M \otimes_R (N \oplus N') \cong (M \otimes_R N) \oplus (M \otimes_R N')$.
- 36. Show that $\mathbb{Z}^m \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Z}^{mn}$.
- 37. Given a map $\phi: {}_{R}N \to {}_{R}N'$, produce a map $M \otimes_{R} \phi: M \otimes_{R} N \to M \otimes_{R} N'$.
- 38. With ϕ as in the previous problem, show that $\operatorname{coker}(M \otimes_R \phi) \cong M \otimes_R \operatorname{coker}(\phi)$.

Let G be a cyclic group with 6 elements generated by $g \in G$, and write \otimes_G for $\otimes_{\mathbb{Z}G}$. Let $M_G = \mathbb{Z}^2$ where g acts by the matrix

$$\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}.$$

In the next three problems, we take $_{G}N = \mathbb{Z}/7\mathbb{Z}$, but we vary the action of G.

- 39. Setting gn = n for all $n \in N$, compute $M \otimes_G N$.
- 40. Setting gn = n + n for all $n \in N$, compute $M \otimes_G N$.

41. Setting gn = n + n + n for all $n \in N$, compute $M \otimes_G N$.

Let G be a group with two elements, and let $R = \mathbb{Z}G$ be the group ring of G. (This is the ring whose elements are formal \mathbb{Z} -linear combinations of elements of G, and where multiplication of elements is given by composition in the group.) Recall that left G-modules become left R-modules and vice versa.

- 42. Find a free resolution of ${}_{G}\mathbb{Z}$, the integers with trivial left *G*-action.
- 43. Compute $\mathbb{Z} \otimes_{\mathbb{Z}G}^{L_i} \mathbb{Z}$ for all $i \geq 0$ where \mathbb{Z} carries the trivial left action of G, and $\otimes_{\mathbb{Z}G}^{L_i} \mathbb{Z}$ denotes the left derived tensor product of the right exact functor $\otimes_{\mathbb{Z}G} \mathbb{Z}$.
- 44. Let $_{G}M = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ where the nontrivial element of G acts by $(1,0) \mapsto (1,1)$ and $(0,1) \mapsto (0,1)$. Find a free resolution of $_{G}M$.

For the last problem, let $G = S_3$ be the symmetric group.

45. Find a free resolution of ${}_{G}\mathbb{Z}$, the integers with trivial left G-action.

Definition 0.9. Let R be a ring. For a fixed left R-module N,

$$\operatorname{Tor}_{i}^{R}(M, N) = M \otimes_{R}^{L_{i}} N$$

and

$$\operatorname{Ext}_{R}^{i}(N, M) = R^{j}\operatorname{Hom}_{R}(N, M).$$

- 46. Prove that for any abelian groups A and B, $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group and that $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B) = 0$ for all $n \geq 2$.
- 47. Let $R = \mathbb{Z}/4\mathbb{Z}$ and consider $M = \mathbb{Z}/2\mathbb{Z}$ as an *R*-module.
 - a. Find projective and injective resolutions for M.
 - b. Compute $\operatorname{Tor}_{i}^{R}(M, M)$.
 - c. Compute $\operatorname{Ext}^{i}_{R}(M, M)$.
- 48. Using the fact that every abelian group B has an injective resolution of the form $B \to I_0 \to I_1 \to 0 \to \ldots \to 0 \to \ldots$, prove that $\text{Ext}^n_{\mathbb{Z}}(A, B) = 0$ for all abelian groups A and B and $n \ge 2$.

Definition 0.10. A filtered chain complex $F_{\bullet}C_{\bullet}$ is a sequence of chain complexes

$$\cdots \subseteq F_0 C_{\bullet} \subseteq F_1 C_{\bullet} \subseteq F_2 C_{\bullet} \subseteq \cdots$$

where each F_nC_{\bullet} is a subcomplex of $F_{n+1}C_{\bullet}$.

49. If X is a topological space that is filtered by a sequence of subspaces $X_0 \subseteq X_1 \subseteq X_1 \subseteq \cdots$, show that the complex of singular chains on X is filtered by the rule $F_n C_{\bullet}^{sing} X = C_{\bullet}^{sing} X_n$.

Definition 0.11. Let M be a G-module. Then the *n*th cohomology group of G with coefficients in M is $H^n(G; M) := \operatorname{Ext}_{\mathbb{Z}G}^n(\mathbb{Z}, M)$ where G acts trivially on \mathbb{Z} . Similarly, the *n*th homology group of G with coefficients in M is $H_n(G; M) := \operatorname{Tor}_n^{\mathbb{Z}G}(\mathbb{Z}, M)$ where G acts trivially on \mathbb{Z} .

If you are familiar with invariants and coinvariants, it is helpful to think of the cohomology groups $H^n(G; M)$ as the right derived functors of $M \mapsto M^G$ and the homology groups $H_n(G; M)$ as the left derived functors of $M \mapsto M_G$.

50. Let G be the trivial group and let A be any abelian group. Compute $H_n(G; A)$ and $H^n(G; A)$ for all $n \ge 0$.

HOMOLOGICAL ALGEBRA

51. Let G be the infinite cyclic group (written multiplicatively) with generator x. Then we can identify $\mathbb{Z}G$ with $\mathbb{Z}[x, x^{-1}]$. Prove that $0 \to \mathbb{Z}G \xrightarrow{x-1} \mathbb{Z}G \to \mathbb{Z} \to 0$ is exact, and then show that $H^n(G; A) = 0$ and $H_n(G; A) = 0$ for all n > 1 and G-modules A.