HOMOLOGICAL ALGEBRA

This document is about abelian groups and R-modules, but we will later see that everything makes sense with abelian groups replaced by objects from an "abelian category."

Suppose we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0, \tag{1}
\end{equation*}
$$

so that f is an injection, g is a surjection, and $\operatorname{ker} g=\operatorname{im} f$.

1. Show that f is an isomorphism if and only if $C=0$, and similarly that $A=0$ if and only if g is an isomorphism.
2. Show that $B=0$ if and only if A and C are zero.
3. Show that B is not always determined up-to-isomorphism by A and C. That is, show that there exist A, C, B, and B^{\prime} with B not isomorphic to B^{\prime} so that

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

and

$$
0 \rightarrow A \rightarrow B^{\prime} \rightarrow C \rightarrow 0
$$

are both exact sequences.
4. To ponder: Given A and C, what choices are there for f, B, and g ? This is called the "extension problem" for A and C.

Definition 0.1. A module P is called projective if the functor $\operatorname{Hom}(P,-)$ is exact, so that the sequence

$$
0 \rightarrow \operatorname{Hom}(P, A) \xrightarrow{\operatorname{Hom}(P, f)} \operatorname{Hom}(P, B) \xrightarrow{\operatorname{Hom}(P, g)} \operatorname{Hom}(P, C) \rightarrow 0
$$

is still exact as a sequence of abelian groups.
5. Show that X and Y are projective exactly when $X \oplus Y$ is projective.
6. Show that the abelian group \mathbb{Z} is projective, and deduce the same for \mathbb{Z}^{n}.
7. Show that if P is projective, then any surjection $p: A \rightarrow P$ admits a map $i: P \rightarrow A$ with $p \circ i=1_{P}$. The surjection p is then said to be "split" and i is called a "splitting."
8. Returning to (1), show that if C is projective, then $B \cong A \oplus C$, and so the extension problem is easy in this case.
The next problems indicate some of the interest in non-free projective modules, indicating a connection to K-theory. Let $S^{1}=[0,1] /(0 \sim 1)$ be the circle, and let R be the ring of continuous functions $S^{1} \rightarrow \mathbb{R}$.
9. Show that $M=\{f:[0,1] \rightarrow \mathbb{R} \mid f(0)=-f(1)\}$ is an R-module.
10. Using the intermediate value theorem, show that M is not free.
11. Find a continuous path $\gamma:[0,1] \rightarrow \mathrm{GL}(2, \mathbb{R})$ with $\gamma(0)=I$ and $\gamma(1)=-I$.
12. Show that $M \oplus M \cong R \oplus R$, and conclude that M is projective.
13. Find a two-by-two matrix $\pi \in M_{2}(R)$ so that $\pi \pi=\pi$ (this condition gives us the word "projective"), π has rank one when its entries are evaluated at any point $t \in S^{1}$,
but π is not conjugate to

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

under the action of $\mathrm{GL}(2, R)$.
An injective module I is one for which the contravariant representable functor $\operatorname{Hom}(-, I)$ is exact.
14. If k is a field, show that k is injective as a k-module.
15. Is \mathbb{Z} an injective abelian group?
16. Show that $\mathbb{Z} / 2$ is injective as a $\mathbb{Z} / 2$-module, but not as an abelian group.
17. Let \mathbb{Q} denote the group rational numbers with addition. Show that the quotient group \mathbb{Q} / \mathbb{Z} is an injective abelian group. Is this group indecomposable?
18. Find a nonzero injective $\mathbb{Z}[x]$-module.

Definition 0.2. A chain complex is a sequence of modules $C_{\bullet}=\left\{C_{n}: n \in \mathbb{Z}\right\}$ together with homomorphisms $d_{n}: C_{n} \rightarrow C_{n-1}$, called differentials or boundary maps, satisfying $d_{n} \circ d_{n+1}=0$ for all $n \in \mathbb{Z}$. The kernel of d_{n} is the module of n-cycles of C_{\bullet}, written $Z_{n}\left(C_{\bullet}\right)$, and the image of d_{n+1} is the module of n-boundaries of C_{\bullet}, written $B_{n}\left(C_{\bullet}\right)$. The nth homology of C_{\bullet} is the quotient $H_{n}\left(C_{\bullet}\right)=Z_{n}\left(C_{\bullet}\right) / B_{n}\left(C_{\bullet}\right)$.

A cochain complex is a sequence of module $C^{\bullet}=\left\{C^{n}: n \in \mathbb{Z}\right\}$ together with homomorphisms $d^{n}: C^{n} \rightarrow C^{n+1}$ called differentials or coboundary maps, satisfying $d^{n+1} \circ d^{n}=0$ for all $n \in \mathbb{Z}$.
19. Set $C_{n}=\mathbb{Z} / 9 \mathbb{Z}$ for all $n \geq 0$ and $C_{n}=0$ for all $n<0$. Moreover, define $d_{n}: C_{n} \rightarrow$ C_{n-1} by $d_{n}(x)=3 x$. Prove that C_{\bullet} is a complex of $\mathbb{Z} / 9 \mathbb{Z}$-modules and compute its homology.
20. Write the definition of the nth cohomology of a cochain complex C^{\bullet}. Hint: translate the definition of homology to cochain complexes.
Definition 0.3. A chain map between two chain complexes $\left(C_{\bullet}, d_{C, \bullet}\right)$ and $\left(D_{\bullet}, d_{D, \bullet}\right)$ is a sequence of homomorphisms $f_{n}: C_{n} \rightarrow D_{n}$ that satisfy $d_{D, n} \circ f_{n}=f_{n-1} \circ d_{C, n}$ for all $n \in \mathbb{Z}$.
21. Prove that if $f: C_{\bullet} \rightarrow D_{\bullet}$ is a chain map, then $f_{n}\left(Z_{n}\left(C_{\bullet}\right)\right) \subseteq Z_{n}\left(D_{\bullet}\right)$ and $f_{n}\left(B_{n}\left(C_{\bullet}\right)\right) \subseteq$ $B_{n}\left(D_{\bullet}\right)$ for all $n \in \mathbb{Z}$.
22. Prove that for each $n \in \mathbb{Z} H_{n}$ is a functor from $\mathrm{Ch}(\mathrm{Ab})$, the category of chain complexes of abelian groups with chain maps, to Ab.
Let S be a commutative ring. The category $\mathrm{Ch}(S-\mathrm{Mod})$ is an abelian category, and therefore contains exact sequences.

Definition 0.4. A left resolution of an S-module M is an exact sequence of S-modules

$$
\ldots \xrightarrow{d_{n+1}} E_{n} \xrightarrow{d_{n}} \ldots \xrightarrow{d_{2}} E_{1} \xrightarrow{d_{1}} E_{0} \xrightarrow{\varepsilon} M \rightarrow 0 .
$$

The homomorphisms d_{n} are called boundary maps, and the homomorphism ε is called the augementation map. For succinctness, we often write left resolutions as

$$
E_{\bullet} \stackrel{\varepsilon}{\rightarrow} M \rightarrow 0 .
$$

A right resolution of an S-module M is an exact sequence of S-modules

$$
0 \rightarrow M \xrightarrow{\varepsilon} D_{0} \xrightarrow{d^{0}} D_{1} \xrightarrow{d^{1}} \ldots \xrightarrow{d^{n-1}} D_{n} \xrightarrow{d^{n}} \ldots
$$

For succinctness, we often write right resolutions as

$$
0 \rightarrow M \xrightarrow{\varepsilon} C_{\bullet} .
$$

If all the E_{n} are free modules, then we say that $E_{\bullet} \xrightarrow{\varepsilon} M \rightarrow 0$ is a free resolution, and if all the E_{n} are projective modules, then we say that $E_{\bullet} \xrightarrow{\varepsilon} M \rightarrow 0$ is a projective resolution. If all the C_{n} are injective modules, then we say that $0 \rightarrow M \xrightarrow{\varepsilon} C_{\bullet}$ is an injective resolution.
23. Show that every S-module M has a surjection from a (possibly infinite) direct sum of copies of S. What does this say about the existence of a free resolution of M ?

Definition 0.5. A quasi-isomorphism of chain complexes is a chain map $f_{\bullet}: C_{\bullet} \rightarrow D_{\bullet}$ so that $f_{n}: H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(D_{\bullet}\right)$ is an isomorphism for all $n \in \mathbb{Z}$.
24. For any S-module M, find a chain complex of free S-modules C_{\bullet} so that $H_{0} C_{\bullet} \cong M$ and $H_{p} C_{\bullet}=0$ otherwise. Probably you will want to pick $C_{p}=0$ for $p<0$.
25. Find a quasi-isomorphism from C_{\bullet} to the complex $\ldots \rightarrow 0 \rightarrow M \rightarrow 0 \rightarrow \ldots$.
26. If X_{\bullet} is a projective resolution of an S-module A and Z_{\bullet} is a projective resolution of an S-module C, and if these objects sit in a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, find a projective resolution Y_{\bullet} of B so that $0 \rightarrow X_{\bullet} \rightarrow Y_{\bullet} \rightarrow Z_{\bullet} \rightarrow 0$ is a short exact sequence of chain complexes whose degree-zero homology recovers the original sequence.
27. Let

$$
0 \rightarrow X_{\bullet} \stackrel{f}{\rightarrow} Y_{\bullet} \xrightarrow{g} Z_{\bullet} \rightarrow 0
$$

be a short exact sequence of chain complexes. Show that $X_{n-1} \oplus Y_{n}$ with differential $d(x, y)=d(x)+(-1)^{n} f(x)+d(y)$ is quasi-isomorphic to Z_{\bullet}. Call this complex $M(f)_{\bullet}$; it is the mapping cone of f.
Given a chain complex X_{\bullet}, for any $k \in \mathbb{Z}$ we have the shifted complex $X[k]$ 。, with $X[k]_{n}=X_{n+k}$ for all $n \in \mathbb{Z}$.
28. Show that Y_{\bullet} is a subcomplex of $M(f)$ and $X[-1]_{\bullet}$ is a quotient complex.
29. Using the maps $X_{\bullet} \xrightarrow{f} Y_{\bullet} \subseteq M(f)_{\bullet} \rightarrow X[-1]_{\bullet} \xrightarrow{-f[-1]} Y[-1]_{\bullet}$, construct an exact sequence

$$
H_{n} X \rightarrow H_{n} Y \rightarrow H_{n} Z \rightarrow H_{n-1} X \rightarrow H_{n-1} Y .
$$

Theorem 0.6. If $0 \rightarrow X_{\bullet} \xrightarrow{f} Y_{\bullet} \xrightarrow{g} Z_{\bullet} \rightarrow 0$ is a short exact sequence of chain complexes, then there are natural maps $\partial: H_{n}\left(Z_{\bullet}\right) \rightarrow H_{n-1}\left(X_{\bullet}\right)$ and a long exact sequence

$$
\ldots \xrightarrow{g} H_{n+1}\left(Z_{\bullet}\right) \xrightarrow{\partial} H_{n}\left(X_{\bullet}\right) \xrightarrow{f} H_{n}\left(Y_{\bullet}\right) \xrightarrow{g} H_{n}\left(Z_{\bullet}\right) \xrightarrow{\partial} H_{n-1}\left(X_{\bullet}\right) \xrightarrow{f} \ldots
$$

Definition 0.7. Let \mathcal{F} be a right exact functor from S-Mod to R-Mod (where R and S are both commutative unital rings). We can construct the left derived functors of $\mathcal{F}, L_{i} \mathcal{F}$ $(i \geq 0)$, as follows. For each S-module, M, choose a projective resolution $P_{\bullet} \rightarrow M \rightarrow 0$ and define

$$
L_{i} \mathcal{F}(M)=H_{i}\left(\mathcal{F}\left(P_{\bullet}\right)\right)
$$

[^0]Let \mathcal{G} be a left exact functor from S-Mod to R-Mod. We can construct the right derived functors of $\mathcal{G}, R^{j} \mathcal{G}(j \geq 0)$, as follows. For each S-module M, choose an injective resolution $0 \rightarrow M \rightarrow I_{\bullet}$ and define

$$
R^{j} \mathcal{G}(M)=H^{j}\left(\mathcal{G}\left(I_{\bullet}\right)\right)
$$

30. Prove that if P_{\bullet} and Q_{\bullet} are two different projective resolutions of an S-module M, then $H_{i}\left(\mathcal{F}\left(P_{\bullet}\right)\right) \cong H_{i}\left(\mathcal{F}\left(Q_{\bullet}\right)\right)$, thus proving that our definition of left-derived functors is well-defined. (This exercise is a little challenging and requires the use of a "chain homotopy".)
31. Prove that for any S-module $M, L_{0} \mathcal{F}(M) \cong \mathcal{F}(M)$.
32. Prove the exercises analogous to Problems 30 and 31 for right derived functors.

Definition 0.8. If R is a ring, and if $M_{R},{ }_{R} N$ are modules with opposite-sided actions, the tensor product is an abelian group defined by the formula

$$
M \otimes_{R} N=\mathbb{Z} \cdot(M \times N) / \sim
$$

where \sim is generated by the relations

$$
\begin{array}{cc}
& (m r, n) \sim(m, r n) \\
\left(m+m^{\prime}, n\right) \sim(m, n)+\left(m^{\prime}, n\right) & \left(m, n+n^{\prime}\right) \sim(m, n)+\left(m, n^{\prime}\right) \\
(0, n) \sim 0 & (m, 0) \sim 0
\end{array}
$$

for all $m, m^{\prime} \in M, n, n^{\prime} \in N$, and $r \in R$. The equivalence class of $1 \cdot(m, n) \in \mathbb{Z} \cdot(M \times N)$ is written $m \otimes_{R} n$, or even just $m \otimes n$.

We mention that, in the definition, $\mathbb{Z} \cdot(M \times N)$ denotes the free abelian group on the set $M \times N$, even though this set carries the structure of an abelian group. This is intentional. In the tensor product, we definitely do not want $\left(m+m^{\prime}\right) \otimes\left(n+n^{\prime}\right)=(m \otimes n)+\left(m^{\prime} \otimes n^{\prime}\right)$, even though $\left(m+m^{\prime}, n+n^{\prime}\right)=(m, n)+\left(m^{\prime}, n^{\prime}\right)$ does hold in $M \times N$. Rather, in the tensor product,

$$
\begin{aligned}
\left(m+m^{\prime}\right) \otimes\left(n+n^{\prime}\right) & =m \otimes\left(n+n^{\prime}\right)+m^{\prime} \otimes\left(n+n^{\prime}\right) \\
& =(m \otimes n)+\left(m \otimes n^{\prime}\right)+\left(m^{\prime} \otimes n\right)+\left(m^{\prime} \otimes n^{\prime}\right)
\end{aligned}
$$

In other words, the symbol \otimes is meant to be bilinear, like an inner product, or like matrix multiplication.
33. Prove that $R \otimes_{R} N \cong N$.
34. By symmetry, conclude that $M \otimes_{R} R \cong M$ as well.
35. Given another left R-module ${ }_{R} N^{\prime}$, show that $M \otimes_{R}\left(N \oplus N^{\prime}\right) \cong\left(M \otimes_{R} N\right) \oplus\left(M \otimes_{R} N^{\prime}\right)$.
36. Show that $\mathbb{Z}^{m} \otimes_{\mathbb{Z}} \mathbb{Z}^{n} \cong \mathbb{Z}^{m n}$.
37. Given a $\operatorname{map} \phi:{ }_{R} N \rightarrow{ }_{R} N^{\prime}$, produce a map $M \otimes_{R} \phi: M \otimes_{R} N \rightarrow M \otimes_{R} N^{\prime}$.
38. With ϕ as in the previous problem, show that $\operatorname{coker}\left(M \otimes_{R} \phi\right) \cong M \otimes_{R} \operatorname{coker}(\phi)$.

Let G be a cyclic group with 6 elements generated by $g \in G$, and write \otimes_{G} for $\otimes_{\mathbb{Z} G}$. Let $M_{G}=\mathbb{Z}^{2}$ where g acts by the matrix

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]
$$

In the next three problems, we take ${ }_{G} N=\mathbb{Z} / 7 \mathbb{Z}$, but we vary the action of G.
39. Setting $g n=n$ for all $n \in N$, compute $M \otimes_{G} N$.
40. Setting $g n=n+n$ for all $n \in N$, compute $M \otimes_{G} N$.
41. Setting $g n=n+n+n$ for all $n \in N$, compute $M \otimes_{G} N$.

Let G be a group with two elements, and let $R=\mathbb{Z} G$ be the group ring of G. (This is the ring whose elements are formal \mathbb{Z}-linear combinations of elements of G, and where multiplication of elements is given by composition in the group.) Recall that left G-modules become left R-modules and vice versa.
42. Find a free resolution of ${ }_{G} \mathbb{Z}$, the integers with trivial left G-action.
43. Compute $\mathbb{Z} \otimes_{\mathbb{Z} G}^{L_{i}} \mathbb{Z}$ for all $i \geq 0$ where \mathbb{Z} carries the trivial left action of G, and $-\otimes_{\mathbb{Z} G}^{L_{i}} \mathbb{Z}$ denotes the left derived tensor product of the right exact functor $-\otimes_{\mathbb{Z} G} \mathbb{Z}$.
44. Let ${ }_{G} M=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ where the nontrivial element of G acts by $(1,0) \mapsto(1,1)$ and $(0,1) \mapsto(0,1)$. Find a free resolution of ${ }_{G} M$.
For the last problem, let $G=S_{3}$ be the symmetric group.
45. Find a free resolution of ${ }_{G} \mathbb{Z}$, the integers with trivial left G-action.

Definition 0.9. Let R be a ring. For a fixed left R-module N,

$$
\operatorname{Tor}_{i}^{R}(M, N)=M \otimes_{R}^{L_{i}} N
$$

and

$$
\operatorname{Ext}_{R}^{i}(N, M)=R^{j} \operatorname{Hom}_{R}(N, M)
$$

46. Prove that for any abelian groups A and B, $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group and that $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for all $n \geq 2$.
47. Let $R=\mathbb{Z} / 4 \mathbb{Z}$ and consider $M=\mathbb{Z} / 2 \mathbb{Z}$ as an R-module.
a. Find projective and injective resolutions for M.
b. Compute $\operatorname{Tor}_{i}^{R}(M, M)$.
c. Compute $\operatorname{Ext}_{R}^{i}(M, M)$.
48. Using the fact that every abelian group B has an injective resolution of the form $B \rightarrow I_{0} \rightarrow I_{1} \rightarrow 0 \rightarrow \ldots \rightarrow 0 \rightarrow \ldots$, prove that $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)=0$ for all abelian groups A and B and $n \geq 2$.
Definition 0.10. A filtered chain complex $F_{\bullet} C_{\bullet}$ is a sequence of chain complexes

$$
\cdots \subseteq F_{0} C_{\bullet} \subseteq F_{1} C_{\bullet} \subseteq F_{2} C_{\bullet} \subseteq \cdots
$$

where each $F_{n} C_{\bullet}$ is a subcomplex of $F_{n+1} C_{\bullet}$.
49. If X is a topological space that is filtered by a sequence of subspaces $X_{0} \subseteq X_{1} \subseteq$
$X_{1} \subseteq \cdots$, show that the complex of singular chains on X is filtered by the rule $F_{n} C_{\bullet}^{\text {sing }} X=C_{\bullet}^{\text {sing }} X_{n}$.

Definition 0.11. Let M be a G-module. Then the nth cohomology group of G with coefficients in M is $H^{n}(G ; M):=\operatorname{Ext}_{\mathbb{Z} G}^{n}(\mathbb{Z}, M)$ where G acts trivially on \mathbb{Z}. Similarly, the nth homology group of G with coefficients in M is $H_{n}(G ; M):=\operatorname{Tor}_{n}^{\mathbb{Z} G}(\mathbb{Z}, M)$ where G acts trivially on \mathbb{Z}.

If you are familiar with invariants and coinvariants, it is helpful to think of the cohomology groups $H^{n}(G ; M)$ as the right derived functors of $M \mapsto M^{G}$ and the homology groups $H_{n}(G ; M)$ as the left derived functors of $M \mapsto M_{G}$.
50. Let G be the trivial group and let A be any abelian group. Compute $H_{n}(G ; A)$ and $H^{n}(G ; A)$ for all $n \geq 0$.
51. Let G be the infinite cyclic group (written multiplicatively) with generator x. Then we can identify $\mathbb{Z} G$ with $\mathbb{Z}\left[x, x^{-1}\right]$. Prove that $0 \rightarrow \mathbb{Z} G \xrightarrow{x-1} \mathbb{Z} G \rightarrow \mathbb{Z} \rightarrow 0$ is exact, and then show that $H^{n}(G ; A)=0$ and $H_{n}(G ; A)=0$ for all $n>1$ and G-modules A.

[^0]: ${ }^{1} \mathrm{~A}$ right exact functor is a functor that preserves right exact sequences.

