
A SURVEY OF FId-MODULES

STEVEN V SAM AND ANDREW SNOWDEN

Contents

1. Introduction 1
2. Hilbert series, derived category generators, and regularity 3
3. Depth, Fourier transform, and Poincaré series 6
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1. Introduction

1.1. History. In [CEF], Church, Ellenberg, and Farb introduced the notion of FI-module.
In that paper, they studied FI-modules in characteristic 0, and proved two fundamental
theorems about them: (a) finitely generated FI-modules over a noetherian coefficient ring
are noetherian; and (b) finitely generated FI-modules over a field have eventually polyno-
mial growth. Additionally, [CEF] gave an immense number of applications of FI-modules,
though that will not concern us so much here. Shortly after [CEF] appeared, we released
the paper [SS1] that studies modules over the twisted commutative algebra (tca) A(1) in
characteristic 0.1 In fact, modules over this tca are the same thing as FI-modules, so our
paper can also be seen as a study of FI-modules, though the point of view is quite different.
We gave an essentially complete description of the category of modules, and showed that the
theory has an extremely rich internal structure.

A few months after the above two papers, Church, Ellenberg, Farb, and Nagpal released
the paper [CEFN], which amounted to the first piece of progress on FI-modules over more
general rings (i.e., not characteristic 0). They proved (a) for arbitrary noetherian coefficient
rings and (b) for arbitrary coefficient fields. A few years later, Nagpal released his thesis
[Nag], in which he proves a theorem that, in our opinion, is really the key to FI-modules
over general rings: if M is a finitely generated FI-module over a noetherian ring, then some
shift of M is ]-filtered. This theorem has allowed nearly all of the results from [SS1] to be
extended to positive characteristic. These extensions have been carried out by a number of
different authors (Church, Ellenberg, Gan, Li, Nagpal, Ramos, and probably others) in the
last year or two. We remark that these extensions are not always a simple application of
[Nag] and sometimes require serious new ideas, as is the case with [CE] for example. Our
understanding of FI-modules in positive characteristic is still not quite as complete as it is
in characteristic 0, but now comes reasonably close.

Date: June 26, 2016.
SS was supported by NSF grant DMS-1500069. AS was supported by NSF grant DMS-1453893.
1In [SS1], the notation Sym(C〈1〉) was used in place of A(1).
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The tca perspective shows that FI-modules are but the tip of an enormous iceberg: A(1)
is the simplest tca—it is somewhat analogous to a polynomial ring in a single variable—and
modules over more complicated tca’s can be thought of as more complicated versions of FI-
modules. In this document, we focus on the tca A(d) freely generated by d indeterminates
of degree 1; this is the next step up in difficulty from A(1). There is an “FI-perspective” on
A(d). Let FId be the category whose objects are finite sets and where a morphism f : S → T
is an injection together with a d-coloring on the complement of the image (i.e., a function
T \ f(S)→ [d]). Then A(d)-modules are equivalent to FId-modules. However, we prefer to
use the tca perspective in this paper for the most part.

In characteristic 0, the analogs of theorems (a) and (b) for FId-modules were first proved
in [Sn]. (In fact, this paper appeared well before [CEF], but the language is quite different.)
Note that theorem (b) is different for FId-modules: exponential growth is possible. (See
Theorem 2.1 below for the exact statement.) These theorems were extended to arbitrary
coefficient rings in [SS3] using Gröbner-theoretic techniques. While there are now several
proofs of (a) and (b) for FI-modules, the proofs in [SS3] are the only one for FId-modules
with d > 1 (over general coefficient rings).

In a shortly forthcoming work [SS4], we extend our results on A(1)-modules in [SS1] to
A(d)-modules for arbitrary d (in characteristic 0). Like [SS1] did for A(1)-modules, [SS4]
gives an essentially complete picture of the category of A(d)-modules. The purpose of this
document is to give an overview of some of the results from [SS4]. None of them are known
in positive characteristic (when d > 1), and we believe this will be a very fertile area of
research in the near future.

1.2. Summary. The following table summarizes the state of affairs for FI-modules:

Characteristic 0 Arbitrary
Theorems (a) and (b) [CEF] [CEFN]
Complete picture [SS1] [Nag] + others

The corresponding picture for FId-modules is:

Characteristic 0 Arbitrary
Theorems (a) and (b) [Sn] [SS3]
Complete picture [SS4] Non-existent!

This document summarizes [SS4], with the hope of stimulating research in the bottom right
square.

1.3. Basic definitions. We let A(d) be the tca freely generated by d degree 1 variables over
the complex numbers. For the purposes of this paper, we identify A(d) with the polynomial
ring Sym(C∞ ⊗Cd), equipped with the natural action of GL∞. We write |A(d)| when we
want to think of A(d) simply as a C-algebra and not a tca. An A(d)-module is by definition
an |A(d)|-module equipped with a compatible polynomial action of GL∞. (A representation
of GL∞ is polynomial if it decomposes into a direct sum of Schur functors.) As mentioned
above, the category of A(d)-modules is equivalent to the category of FId-modules, though
we usually prefer the A(d) perspective. (The equivalence between these two categories is
induced by Schur–Weyl duality.) There is an obvious notion of finite generation for A(d)-
or FId-modules; see [CEF, Definition 1.2] for details when d = 1.
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1.4. Outline. The results of [SS4] can roughly be divided into two classes: one consists
of rather technical structural results about A(d)-modules, while the other consists of more
accessible and perhaps interesting results. The latter logically depend on the former, and
so [SS4] begins with more technical material. In the interest of making this paper more
readable, we have taken a different tack. We begin each of §2 and §3 by stating one of the
“second class” results. We then state the “first class” result that is used in the proof, and
explain a bit about how the proof works. (Each of these sections also ends with a “bonus
application” of the technical material.) We hope this motivates the more technical material
and makes it easier to digest. In §4 we summarize the structure theory; this section is
necessarily more technical. Finally, in §5 we state a few additional theorems.

2. Hilbert series, derived category generators, and regularity

In §2.1 we review the existing (i.e., prior to [SS4]) theory of Hilbert series for A(d)-
modules. In §2.2 we introduce an invariant called the formal character, which captures
much more information than the Hilbert series, and state a rationality result for it. In §2.3,
we state the technical result needed to prove the rationality of formal characters, and in §2.4
we explain how the proof of rationality works. Finally, in §2.5 we give a second application
of the results of §2.3, to the regularity of A(d)-modules.

2.1. Standard Hilbert series. Let M be an FId-module over a field. We define its Hilbert
series by

HM(t) =
∑
n≥0

dim(Mn)
tn

n!
,

where Mn denotes the value of the functor M on the set [n] = {1, . . . , n}. The Hilbert series
of an A(d)-module M is defined as the Hilbert series of the corresponding FId-module. More
directly, if M =

⊕
λMλ ⊗ Sλ(C

∞) then

HM(t) =
∑
λ

dim(Mλ) dim(Mλ)
t|λ|

|λ|!

where Mλ is the Specht module. The main theorem about these series is:

Theorem 2.1. If M is finitely generated FId- or A(d)-module then HM(t) has the form∑d
r=0 pr(t)e

rt where pr(t) is a polynomial.

This was proved in [Sn] in characteristic 0 using representation-theoretic techniques and
[SS3] in general using techniques from Gröbner bases and formal languages.

Remark 2.2. When d = 1 this theorem recovers the fact that if M is a finitely generated
FI-module then dim(Mn) is eventually a polynomial function of n. �

2.2. Formal characters. The standard Hilbert series records only the dimension of the
Sn-representation Mn, and therefore forgets quite a bit of information. To remedy this, we
introduce a more refined invariant called the formal character. Let M be an A(d)-module,
decomposed as above. Then its formal character is defined as

ΘM =
∑
λ

dim(Mλ)sλ

where sλ is the Schur function. Thus ΘM is an infinite linear combination of symmetric
functions. Since each symmetric function is a polynomial in the complete homogeneous
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Schur functions sn, one can think of ΘM as a power series in the infinitely many variables
{sn}n≥0. We note that ΘM determines M as a representation of GL∞, up to isomorphism.

For k ≥ 0, let Sk =
∑

n≥k
(
n
k

)
sk. Then in [SS4] we prove the following result:

Theorem 2.3. If M is a finitely generated A(d)-module then ΘM is a polynomial in the
sn’s and Sn’s.

This is a vast improvement of Theorem 2.1. In fact, our results are much more precise
and match various characteristics of M and ΘM (for instance, only those Sn with n ≤ d
appear). We have two proofs. One is representation theoretic, and boils down to a lengthy
and detailed computation. The other is an elegant application of the structure theory of
A(d)-modules. We present the second proof here (or at least its main ideas).

There is a variant of the formal character, called the enhanced Hilbert series. It is
easier to define from the FId point of view, so let M be an FId-module. Its enhanced Hilbert
series is

H̃M(t) =
∑
λ

tr(cλ|M|λ|)
tλ

λ!
,

where cλ is the conjugacy class in S|λ| corresponding to λ, tλ is t
m1(λ)
1 t

m2(λ)
2 · · · , where mi(λ) is

the multiplicity of i in λ, and λ! = m1(λ)!m2(λ)! · · · . It turns out that the enhanced Hilbert
series is obtained from the formal character by applying a ring isomorphism Q[sn]→ Q[tn],
and so the two carry exactly the same information, just packaged differently. In particular,

Theorem 2.3 implies a rationality result for H̃M .
One advantage the enhanced Hilbert series has is that it admits a nice variant in positive

characteristic: use the Brauer character instead of the normal character. (That is, replace
tr(cλ|−) with its Brauer version.) This leads to a natural problem:

Problem 2.4. Prove a rationality result for the Brauer version of the enhanced Hilbert series
of a finitely generated FId-module over a field of positive characteristic.

We have solved this with R. Nagpal for d = 1, but do not know how to do it for d > 1.

2.3. Generators for the derived category. We now introduce the somewhat technical
structural result about A(d)-modules that we will use to prove Theorem 2.3. Recall that
A(d) is defined as Sym(C∞⊗Cd). It is perhaps more canonical to let E be a d-dimensional
vector space and then define A(E) as Sym(C∞ ⊗ E). From this point of view, there is no
reason to restrict E to simply being a vector space: one could just as well allow E to be a
free module over some C-algebra, or even a locally free sheaf on a variety over C. In fact,
we will require exactly this.

Let Y be the Grassmannian Grr(E) of rank r quotients of E = Cd, and write π : Grr(E)→
Spec(C) for the structure map. We let Q be the tautological quotient bundle on Y . We
consider A(Q) as a sort of sheaf of tca’s on Y . We have π∗(A(Q)) = A(E), so if M is an
A(Q)-module then Riπ∗(M) is an A(E)-module for all i ≥ 0. It is not difficult to show that
if M is finitely generated then so is each Riπ∗(M). We define Cr ⊂ Db

fg(A(E)) to be the
collection of objects of the form

Rπ∗(V ⊗ F ⊗A(Q))

where V is a finite length polynomial representation of GL∞ and F is a coherent sheaf on
Y . (It’s enough to consider V = Sλ(C

∞), for variable λ, in fact.)
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If T is a triangulated category and S is a collection of objects in T then there is a smallest
triangulated subcategory of T containing S. We call this the subcategory generated by S.2

We can now state the theorem of interest:

Theorem 2.5. The category Db
fg(A(E)) is generated by

⋃
0≤r≤d Cr.

Concretely, this means that any object of Db
fg(A(E)) can be constructed from the objects

in the Cr’s in finitely many steps by taking shifts and cones. This theorem leads to the
following axiomatic method for proving results about A(E)-modules:

Corollary 2.6. Let P be a property of objects of Db
fg(A(E)) satisfying the following condi-

tions:

(a) If P is true for M then it is also true for any shift of M .
(b) If P is true for two members or an exact triangle then it is true for the third.
(c) P is true for the objects in Cr, for all 0 ≤ r ≤ d.

Then P is true for all objects in Db
fg(A(E)).

Problem 2.7. Formulate and prove a version of Theorem 2.5 over arbitrary noetherian
coefficient rings.

Remark 2.8. Suppose d = 1, i.e., we are in the FI-module case. Then C0 consists of torsion
objects while C1 consists of free objects. Theorem 2.5 is thus a consequence of the fact that
every object M of Db

fg(A(E)) fits into a triangle

T →M → F →
where T is a finite length complex of finitely generated torsion modules and F is a finite length
complex of finitely generated free modules. This result is known over arbitrary noetherian
coefficient rings (see [Nag]), and so Problem 2.7 is known for d = 1. �

2.4. Back to formal characters. We now explain how to use Theorem 2.5 to prove The-
orem 2.3. We apply Corollary 2.6, taking P(M) to be the statement “ΘM is a polynomial
in the sn’s and Sn’s.” (If M is a complex then ΘM is defined to be the alternating sum
of the Θ’s of the cohomology groups.) It is clear that P satisfies conditions (a) and (b) of
Corollary 2.3. We must verify (c).

Fix r, and let Y , π, and Q be as in the previous section. Suppose that M is a finitely
generated A(Q)-module. Then M decomposes as

⊕
λMλ⊗Sλ(C

∞) where Mλ is a coherent
sheaf on Y . We define the formal character of M as

ΘM =
∑
λ

[Mλ]sλ,

where [Mλ] denotes the class of Mλ in the Grothendieck group K(Y ) of Y . Thus ΘM is a
power series in the sn’s with coefficients in the group K(Y ). One now proves:

(d) If M is an A(Q)-module then Rπ∗(ΘM) = ΘRπ∗(M).
(e) ΘA(Q) is a polynomial in the Sn’s with coefficients in K(Y ).

Statement (d) is immediate, while (e) is an exercise best done with the splitting principle.
To finish up, we note that if M = Sλ(C

∞)⊗ F ⊗A(Q), with F a coherent sheaf on Y , then
ΘM = sλ · [F] ·ΘA(Q), and is thus a polynomial in the sn’s and Sn’s by (e), and so ΘRπ∗(M) is
a polynomial in the sn’s and Sn’s by (d). Therefore condition (c) holds, and so Theorem 2.3
follows.

2This definition of generation may differ slightly from other ones.
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2.5. Regularity. We now give a second easy application of Theorem 2.5. For an A(E)-

module M , let ti(M) to be the maximum degree occurring in Tor
A(E)
i (M,C). Define the

regularity of M to be the supremum of ti(M)− i over i ≥ 0.

Theorem 2.9. A finitely generated A(E)-module has finite regularity.

Proof. We define regularity for a complex of A(E)-modules exactly as for an A(E)-module.
We apply Corollary 2.6, taking P(M) to be “M has finite regularity.” Again, (a) and (b)
are clear and we must verify (c).

Suppose M is an A(π∗(E))-module on Y . We define the regularity of M by looking at
the Tor’s with OY . From the base change isomorphism

Rπ∗(M
L
⊗A(π∗(E)) OY ) = Rπ∗(M)

L
⊗A(E) C,

one deduces that the regularity of Rπ∗(M) is at most the regularity of M plus the dimension
of Grr(E). In particular, if M has finite regularity then so does Rπ∗(M). Thus to verify
(c), it suffices to show that V ⊗ F ⊗ A(Q) has finite regularity as an A(π∗(E))-module.
But one can explicitly compute the relevant Tor’s using a Koszul complex, and so the result
follows. �

Problem 2.10. Prove Theorem 2.9 over arbitrary noetherian coefficient rings.

This is known for d = 1 (by [Nag]) but unknown for d > 1.

3. Depth, Fourier transform, and Poincaré series

In §3.1 we state a result on the asymptotic behavior of depth and projective dimension
for A(d)-modules. In §3.2 we introduce the technical tool needed to prove this theorem (the
Fourier transform). In §3.3, we explain how to use the Fourier transform to prove the results
from §3.1. Finally, in §3.4 we give another application of the Fourier transform, to Poincaré
series.

3.1. Depth. Fix d and put A = A(d). We write A(Cn) for the value of the Schur functor
A on Cn; this is just Sym(Cn ⊗ Cd), a polynomial ring in finitely many variables. Let M
be an A-module. Then M(Cn) is an A(Cn)-module. We write dM(n) (resp. pdM(n)) for the
depth (resp. projective dimension) of M(Cn) as an A(Cn)-module. In [SS4], we prove the
following result:

Theorem 3.1. Let M be a finitely generated A-module.

(a) There exist integers a and b such that dM(n) = an+ b for n� 0.
(b) There exist integers c and d such that pdM(n) = cn+ d for n� 0.

The two statements in the theorem are equivalent by the Auslander–Buchsbaum formula.
We are more interested in statement (a), but will actually prove statement (b). We define
the depth of an A-module M to be the limiting value of dM(n) as n → ∞; thus, in the
notation of the theorem, dM(n) =∞ if a > 0 and dM(n) = b if a = 0.

Problem 3.2. Formulate and prove a version of Theorem 3.1 over arbitrary noetherian
coefficient rings. (Note that it is not even clear how to define dM(n) in general.)

Remark 3.3. Li–Ramos [LR] have formulated a theory of depth of A(1)-modules in positive
characteristic, but it does not immediately connect to the depth as defined in commutative
algebra. �
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3.2. The Fourier transform. We now introduce the tool that will be used to prove The-
orem 3.1. For an A-module M and an integer n, the space⊕

p≥0

TorAp (M,C)n+p

is naturally a comodule over B =
∧

(C∞⊗Cd). In fact, there is a canonical complex K(M)
of B-modules such that Hn(K(M)) is the above B-module. The functor M 7→ K(M) defines
an equivalence of categories between the derived category of A-modules and the derived
category of B-comodules. This is an instance of Koszul duality.

For a polynomial representation V =
⊕

λ Vλ ⊗ Sλ(C
∞), define V ∨ =

⊕
λ V
∗
λ ⊗ Sλ(C

∞),
where (−)∗ denotes the usual linear dual. One can show that M 7→M∗ defines an equivalence
between the category of B-comodules and B-modules.3 Thus the functor M 7→ K(M)∨ is
an equivalence between the derived category of A-modules and the derived category of B-
modules.

For a polynomial representation V as above define V † =
⊕

λ Vλ ⊗ Sλ†(C
∞), where λ† is

the transposed partition. We call (−)† the transpose functor. It is a tensor functor, but
not a symmetric tensor functor: indeed, B† = A. One easily shows that M 7→ M † is an
equivalence between the categories of B-modules and A-modules.

We define the Fourier transform of M ∈ D(A), denoted F(M), to be K(M)∨,†. This
again belongs to D(A), and F is an auto-equivalence of D(A).4 By definition, we have

(3.4) H−n(F(M)) =
⊕
p≥0

TorAp (M,C)∨,†p+n.

In [SS4], we prove the following result:

Theorem 3.5. The Fourier transform carries Db
fg(A) into itself, and satisfies F2 = id.

This theorem is proved using Corollary 2.6. The fact that F preserves boundedness is
equivalent to the finiteness of regularity, which has already been discussed (Theorem 2.9).

The above theorem is interesting because it says that if M is a finitely generated A-module
then each linear strand in its projective resolution can itself be naturally endowed with the
structure of a finitely generated A-module (after minor modification). Thus the patterns
one sees in projective resolutions of A-modules are the same patterns one sees in A-modules.
This can be a very useful observation since the internal structure of a module is often easier
to understand than its resolution.

Problem 3.6. Prove Theorem 3.5 over an arbitrary noetherian coefficient ring.

We have done this with R. Nagpal for d = 1, but do not know how to do it for d > 1.

3.3. Back to depth. We now explain how to use Theorem 3.5 to prove Theorem 3.1. Let

M be an A-module. Then pdM(n) ≤ m if and only if Tor
A(Cn)
k (M(Cn),C) = 0 for k > m.

Now, Tor commutes with evaluation on Cn, that is, we have

Tor
A(Cn)
k (M(Cn),C) = TorAk (M,C)(Cn).

3Actually, some finiteness conditions must be imposed here, but we ignore them.
4More canonically, F is an equivalence between the derived categories of A(E) and A(E∗). In the main

text we have implicitly identified Cd with its dual.
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Thus we see that pdM(n) ≤ m if and only if every partition in TorAk (M,C) has > n rows, for
all k > m. For an A-module M , let γM(n) be the maximum size of a partition with at most
n columns appearing in M . As transpose interchanges rows and columns, (3.4) now gives:

Proposition 3.7. We have pdM(n) = maxk
(
γH−k(F(M))(n)− k

)
.

Since H−k(F(M)) is a finitely generated A-module for all k and non-zero for only finitely
many values of k, to prove Theorem 3.1 it is enough to prove:

Proposition 3.8. Let M be a finitely generated A-module. Then there exist integers e and
f such that γM(n) = en+ f for n� 0.

We prove this using a kind of Hilbert series argument. The proof is not worth including
here. However, we do re-emphasize the main point. To prove Theorem 3.1(b), we needed
to understand one aspect of the asymptotic behavior of projective resolutions of A-modules.
The Fourier transform allowed us to convert this to a problem about a certain aspect of the
asymptotic behavior of A-modules (namely, Proposition 3.8), which was easier to solve.

3.4. Poincaré series. We now give one more application of the Fourier transform. We
define the Poincaré series of an A-module M by

PM(t, q) =
∑
n≥0

(−q)nHTorAn (M,C)(t).

One can recover the standard Hilbert series from the Poincaré series by setting q = 1 and
multiplying by HA(t) = edt. The Poincaré series is a very subtle and difficult to study
invariant because it does not factor through the Grothendieck group. Thus tools like Corol-
lary 2.6, which we have so far relied upon, are of little use in its analysis. However, the
Fourier transform saves the day: a simple calculation gives the identity

PM(t, q) =
∑
k≥0

(−q)−kHH−k(F(M))(−qt).

If M is finitely generated then this is a finite sum since F(M) is a bounded complex. Further-
more, since each H−k(F(M)) is a finitely generated A-module, we can appeal to Theorem 2.1
to understand their Hilbert series. We thus find:

Theorem 3.9. If M is a finitely generated A-module then PM(t, q) has the form

d∑
r=0

pr(t, q)e
−rqt

where pr(t, q) ∈ Q[t, q, q−1].

Problem 3.10. Prove Theorem 3.9 over an arbitrary field.

We have done this with R. Nagpal when d = 1 but do not know how to do it for d > 1.

Remark 3.11. One can use the formal character or enhanced Hilbert series in the definition
of Poincaré series to get a stronger invariant. There are versions of Theorem 3.9 for these
variants. �
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4. The structure theory of A(d)-modules

In this section we give an overview of the structure theory of A(d)-modules. The results
here are somewhat technical, but, as we have seen above, are very powerful and give easy
proofs of theorems of interest. We start in §4.1 by describing the “spectrum” of A(d), which
gives a useful picture for understanding modules. Inspired by this, in §4.2 we describe a way
to “cut up” the category ModA into various pieces that should be simpler to understand. In
§4.3 and §4.4, we describe the structure of the pieces. Finally, in §4.5 and §4.6, we describe
the “section functors,” which control how the various pieces of ModA are glued together.

We fix A = A(E) in this section, where E is a d-dimensional vector space.

Remark 4.1. Throughout this section, we use geometric constructions to describe various
aspects of A-modules. These constructions invariably involve infinite dimensional schemes.
We ignore various subtleties involved in working with such objects, to avoid being overly
technical. In [SS4] we are much more careful, and in fact avoid working with infinite di-
mensional schemes to avoid these technicalities. However, the pictures sketched here are the
intuition behind the more rigorous arguments. �

4.1. The spectrum of a tca. Recall that an ideal of A is simply an ideal of the underlying
ring |A| that is GL∞ stable. We say that an ideal p is prime if |p| is prime. We define the
spectrum of A, denoted Spec(A), to be the set of prime ideals with the Zariski topology.
(That is, the closed sets are the V (I) with I an ideal of A.) The spectrum of A gives us a
coarse picture of the category of A-modules, so it is good to understand it before moving on
to more subtle questions.

The spectrum of |A| is the affine space Hom(E, (C∞)∗). Given a point f : E → (C∞)∗ of
this space, the subspace ker(f) of E is an invariant of the GL∞ orbit of f . This suggests
that the spectrum of A should be related to the Grassmannians on E. We now state the
precise result. Define the total Grassmannian of E, denoted Gr(E), to be the following
topological space. As a set, it is the disjoint union of the topological spaces underlying the
schemes Grr(E) for 0 ≤ r ≤ d. A subset Z of Gr(E) is closed if and only if (a) Z ∩Grr(E)
is Zariski closed for all r; and (b) Z is downwards-closed in the sense that if U ∈ Z and
V ⊂ U then V ∈ Z. We then have the following theorem:

Theorem 4.2. The space Spec(A) is homeomorphic to Gr(E).

This theorem suggests that the category of A-modules should be closely connected to the
Grassmannians Grr(E). We will see that this is indeed the case.

Remark 4.3. In [SS1] we point out several analogies between modules over A(1) and graded
modules over C[t]. When d = 1, Gr(E) consists of two points, one closed, and one whose
closure contains the other point. This has the same topology as the spectrum of a DVR,
which we might think of as the localization of C[t] at (t). �

Problem 4.4. Determine the spectrum of the tca A(d) in positive characteristic.

See §5.4 for the definition of A(d) in positive characteristic. The above problem seems
very tractable and would be useful to solve, but we have not seriously worked on it yet.

Remark 4.5. In [SS4] we (together with R. Nagpal) show that the space Gr(E) has Krull
dimension

(
d+1

2

)
, and conclude from this that the category of finitely generatedA-modules has

Krull–Gabriel dimension
(
d+1

2

)
. These results are not known in positive characteristic. �
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4.2. Cutting up the category of modules. Let ar ⊂ A be the rth determinantal ideal.
This is generated by ∧r+1(C∞)⊗

∧r+1(E) ⊂ Symr+1(C∞ ⊗ E) ⊂ A

The set V (ar) ⊂ Spec(A) is identified with
⋃
k≤r Grr(E). We let ModA,≤r be the category

of A-modules supported on V (ar). (An A-module is supported on V (ar) if every element is
annihilated by some power of ar.)

Suppose X is a scheme and Z is a closed subscheme, and let U be the complement X \Z.
The one can describe the category QCoh(U) of quasi-coherent sheaves on U as the quotient
of QCoh(X) by the Serre subcategory QCoh(Z).5 Taking this as our lead, we define ModA,>r
to be the quotient of ModA by the Serre subcategory ModA,≤r. The idea is that ModA,>r
should correspond to modules on

⋃
k>r Grr(E) ⊂ Spec(A). We also let ModA,r ⊂ ModA,≥r

be the image of ModA,≤r. This category corresponds to modules on the single Grassmannian
Grr(E).

We write Tr : ModA → ModA,>r for the localization functor. By general category theory,
this has a right adjoint Sr : ModA,>r → ModA. Intuitively, Tr is like restricting a quasi-
coherent sheaf to an open subscheme and Sr is like pushing forward. We write Σr for
the composition Sr ◦ Tr; this is the saturation functor with respect to ar. There is one
more important functor to introduce: Γr : ModA → ModA,≤r assigns to an A-module M
the maximal submodule supported on V (ar). We call the right-derived functors of Γr local
cohomology, and sometimes denote RiΓr by Hi

ar . For an A-module M (or complex of
A-modules), there is a canonical exact triangle

RΓr(M)→M → RΣrM →
Using the above functors, we define subcategories of the derived category analogous to

the sub/quotients of ModA introduced above. We let D(A)≤r be the subcategory of D(A)
on objects M satisfying RΣr(M) = 0. Similarly, we let D(A)>r be the subcategory on M ’s
satisfying RΓr(M) = 0. Finally, we let D(A)r be the intersection D(A)≤r ∩D(A)≥r. It is not
difficult to show that the we have a semi-orthogonal decomposition6

D(A) = 〈D(A)0,D(A)1, . . . ,D(A)d〉.
Thus one can roughly think of an object of D(A) as being built out of d + 1 pieces. The
functor RΓr kills all the pieces in D(A)k with k > r and leaves the pieces with k ≤ r alone,
while the functor RΣk kills all the pieces with k ≤ r and leaves the pieces with k > r alone.
We define RΠr to be the composition RΓr ◦RΣr−1. This is the projection onto the rth piece
of the semi-orthogonal decomposition.

One of the fundamental results of [SS4] is the following theorem:

Theorem 4.6. The functors RΓr and RΣr take Db
fg(A) into itself. Equivalently, if M is

a finitely generated A-module then RiΓr(M) is finitely generated for all i and vanishes for
i� 0, and similarly for RiΣr(M).

This theorem implies that Db
fg(A) admits a semi-orthogonal decomposition into pieces

Db
fg(A)r. This is an extremely useful structural result about A-modules.

5This assumes some very mild finiteness properties of X.
6The only slightly non-trivial fact one needs to prove this is that injective objects of ModA,≤r remain

injective in ModA.
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Problem 4.7. Prove a version of Theorem 4.6 over arbitrary noetherian coefficient rings.

This has been carried out for d = 1 in [LR], but is unknown for d > 1.

4.3. The category Modgen
A . We now want to better understand the structure of the cate-

gories ModA,r introduced above. The case r = 0 is easy: the finitely generated objects of
ModA,0 are just the finite length A-modules. The simple objects in this category are just the
irreducible GL∞ representations Sλ(C

∞) with the positive degree elements of A acting by 0.
In this subsection, we discuss the next easiest case, namely ModA,d, where d = dim(E). We
denote this category by Modgen

A to emphasize that it is the top piece of the filtration (we
think of Modgen

A as “generic A-modules”).
An A-module can be thought of as a GL∞-equivariant sheaf on Hom(Cd, (C∞)∗) (ignoring

various technical issues). The complement of V (ad−1) is the locus where this map is injective.
The group GL∞ acts transitively on this locus (again, ignoring technicalities), and the
stabilizer of a point is the subgroup G ⊂ GL∞ consisting of matrices of the form(

1 X
0 Y

)
where 1 is the d× d identity matrix. We thus see that Modgen

A is equivalent to a category of
representations of G. Now, G decomposes as a semi-direct product. The normal subgroup
(where Y = 1) is isomorphic to the additive group Cd ⊗ C∞, and the other factor (where
X = 0) is isomorphic to GL∞. (Note that these∞’s are actually “smaller” than the original
ones!) We thus see that giving a representation of G is the same as giving a GL∞-equivariant
representation of Cd ⊗C∞. Furthermore, giving a representation of the abelian Lie algebra
Cd ⊗C∞ is the same as giving a module over its universal enveloping algebra, which is just
Sym(Cd ⊗C∞). Thus objects of Modgen

A are looking a lot like A(d)-modules! In fact:

Theorem 4.8. The category Modgen
A is equivalent to ModA,0.

The basic reason one gets ModA,0 here is that, if one starts with a finitely generated A-
module, then the G-representation one gets has finite length, and thus, when converted to
an A-module, is also finite length. Since ModA,0 has such a simple structure, this gives a
very complete picture of Modgen

A . For instance, it shows:

Corollary 4.9. The Grothendieck group of Modgen,fg
A is Λ, the ring of symmetric functions.

Problem 4.10. Describe Modgen
A over a field of positive characteristic. For instance, com-

pute its Grothendieck group.

Theorem 4.8 is false in positive characteristic. When d = 1, we have some understanding
of the generic category in positive characteristic (e.g., we know its Grothendieck group), but
not a complete picture. For d > 1, there are no results in positive characteristic.

4.4. The category ModA,r. By definition, every object of ModA,r is represented by an
A-module supported on V (ar). It will be easier to first study the subcategory of ModA,r
represented by modules annihilated by ar. We denote this category by ModA,r[ar]. We note
that every finitely generated object of ModA,r admits a finite length filtration where the
graded pieces belong to ModA,r[ar].

To understand ModA,r[ar], we again return to the geometric picture. Intuitively, objects of
this category correspond to GL∞-equivariant sheaves on the rank r locus in Hom(Cd, (C∞)∗).
Let Y = Grr(E), let Q be tautological rank r quotient on Y , and let π : Y → Spec(C) be
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the structure map. There is an isomorphism of schemes between the locus of injections
in Hom(Q, (C∞)∗) and the rank r locus in Hom(Cd, (C∞)∗). A GL∞-equivariant sheaf on
the locus of injections in Hom(Q, (C∞)∗) can be thought of as an object of the category
Modgen

B , where B = A(Q), by a mild generalization of the previous section. We thus see that
ModA,r[ar] should be equivalent to Modgen

B . In fact, this is true, and it’s easy to directly write
down an equivalence. There is a natural surjection π∗(A) → B, induced by the surjection
π∗(E)→ Q, and so if M is an A-module then π∗(M)⊗π∗(A) B is a B-module.

Theorem 4.11. The above functor induces an equivalence ModA,r[ar] ∼= Modgen
B .

Theorem 4.8 remains true in relative situations, and so Modgen
B is equivalent to ModB,0.

This category is easy to understand (every finitely generated object has a finite length
filtration where the graded pieces have trivial B-action), and so gives a very clear picture of
ModA,r[ar]. For example, we have the following corollary:

Corollary 4.12. The Grothendieck group of Modfg
A,r is canonically isomorphic to Λ⊗K(Grr(E)),

where Λ is the ring of symmetric functions and K(Grr(E)) is the Grothendieck group of
Grr(E), which is a free Z-module of rank

(
d
r

)
.

We have thus described the Grothendieck groups of the graded pieces of ModA under some
filtration. In general, this is not enough to describe the Grothendieck group of Modfg

A , since
the Grothendieck group is only a right-exact functor of the category. However, in our case,
Theorem 4.6 implies that K(Modgen

A ) is the direct sum of the K(Modfg
A,r). We thus find:

Corollary 4.13. The Grothendieck group of Modfg
A is free as a Λ-module of rank 2d.

Problem 4.14. Describe ModA,r[ar] in positive characteristic.

Problem 4.15. Compute the Grothendieck group of Modfg
A in positive characteristic.

We know of no progress on these problems for d > 1.

4.5. The section functor on Modgen
A . Recall that the section functor Sd−1 : Modgen

A →
ModA is the right adjoint to the localization functor Td−1 : ModA → Modgen

A . In this section,
we put S = Sd−1 and T = Td−1 for simplicity. Let H = Hom(Cd, (C∞)∗), thought of as
an infinite dimensional affine space, and let U be the open subscheme where the map is
injective. Write j : U → H for the open immersion. We have explained that A-modules are
GL∞-equivariant sheaves on H, while objects of Modgen

A are GL∞-equivariant sheaves on
U . It is thus natural to guess that the section functor should correspond to j∗, and this is
indeed the case. In fact, this is true even at the derived level:

Theorem 4.16. The following diagram commutes:

Modgen
A

RiS // ModA

QCohGL∞(U)
Rij∗ // QCohGL∞(H)

Remark 4.17. In [SS4], there is a version of this theorem stated at finite level (i.e., after
evaluating on Cn), and it is not Rij∗ that appears but (Rij∗)

pol, the “polynomial piece” of
Rij∗. It turns out that at infinite level it is unnecessary to take the polynomial piece. �
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The above theorem is useful because one can actually compute Rj∗. We have a natural
map π : U → Grd((C

∞)∗) defined by taking an injection f : Cd → (C∞)∗ to its image. Let R
be the tautological rank d subbundle on Grd((C

∞)∗). Then π identifies U with the scheme
Isom(Cd,R) over Grd((C

∞)∗). In particular, the map π is affine. We can thus compute
Rij∗ by first applying π∗ and then computing Hi(Grd((C

∞)∗),−). One can use the Borel–
Weil–Bott theorem to compute these latter cohomology groups. By actually carrying out
the details of these computations, we find:

Theorem 4.18. We have the following:

(a) If M ∈ Modgen
A is finitely generated then (RiS)(M) is a finitely generated A-module

for all i, and vanishes for i� 0.
(b) If M = T (V ⊗ A) for a polynomial representation V of GL∞ then S(M) = V ⊗ A

and (RiS)(M) = 0 for i > 0.

Corollary 4.19. Projective A-modules are injective.

Proof. This follows from the fact that T (V ⊗ A) is injective in Modgen
A , which drops out

of our analysis of this category, and the completely formal fact that S takes injective to
injectives. �

Problem 4.20. Generalize Theorem 4.18 to arbitrary noetherian coefficients rings.

This has been done for d = 1 in [LR], but is unknown for d > 1.

4.6. The section functor on ModA,r. Let Y = Grr(E), let Q be the tautological quotient
bundle on Y , and let π : Y → Spec(C) be the structure map. Recall that ModA,r[ar] is
equivalent to Modgen

B ; write Ψ: ModA,r[ar]→ Modgen
B for this equivalence. Let S ′ : Modgen

B →
ModB be the section functor. The following result is not difficult to guess, but the proof has
some technical points:

Theorem 4.21. The following diagram commutes:

ModA ModB
π∗oo

ModA,r[ar]

Sr−1

OO

Modgen
B

S′

OO

Ψ−1
oo

Moreover, it continues to commute at the derived level: that is, if M is an object of ModA,r[ar]
and N = Ψ(M) is the corresponding object of Modgen

B , then there is a canonical isomorphism
RSr−1(M) = Rπ∗(RS

′(N)).

Corollary 4.22. If M ∈ ModA,r is finitely generated then RiSr−1(M) is finitely generated
for all i and vanishes for i� 0.

Proof. By dévissage, one can reduce to the case M ∈ ModA,r[ar]. Let N = Ψ(M). Then
RS ′(N) is a bounded complex of finitely generated B-modules by a relative version of The-
orem 4.18, and so Rπ∗(RS

′(N)) is a bounded complex of finitely generated A-modules. �

The above corollary implies the following: if M is a finitely generated A-module supported
on V (ar), then RΣr−1(M) is a bounded complex of finitely generated A-modules. (Recall that
Σr−1 = Sr−1 ◦ Tr−1, and Tr−1 is an exact functor.) This is a weaker than Theorem 4.6, since
that theorem has no support condition on M . However, it turns out that there is a completely
formal inductive argument that allows one to deduce Theorem 4.6 from Corollary 4.22. Once
these results are in hand, it is not difficult to prove Theorem 2.5.
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5. Additional results and comments

5.1. Depth and local cohomology. In §4.2, we defined the local cohomology Hi
ar(M) of

an A(d)-module along the determinantal ideal ar. Here we will be most interested in the
case r = 0, where we write m in place of ar since it is the maximal ideal of A(d). In §3.1,
we defined the depth of an A-module. We prove that the usual relation between these two
invariants holds:

Theorem 5.1. Let M be a finitely generated A-module of depth d. Then Hi
m(M) = 0 for

i < d and, if d is finite, Hd
m(M) 6= 0.

There is a corresponding theorem for Hi
ar for any r, where depth is replaced by ar-depth.

Problem 5.2. Theorem 5.1 shows that Hi
m(M) = 0 for all i if and only if a > 0 in Theo-

rem 3.1. Is there a way to detect the actual value of a using something like local cohomology?

5.2. Bounds on regularity. Recall that for an A(d)-module M , we let ti(M) be the maxi-

mum degree occurring in Tor
A(d)
i (M,C), and define the regularity of M as the supremum of

ti(M)−i over i ≥ 0. We have shown (Theorem 2.9) that the regularity of a finitely generated
module is always finite. In fact, we have the following result:

Theorem 5.3. Let M be a finitely generated A(d)-module. Then the regularity of M can be
bounded as a function of t0(M), . . . , tn(M), where n = d1

4
d2e+ d+ 1.

This theorem, which is one of the most difficult in [SS4], is inspired by the main theorem
of [CE], which proves the result for d = 1 (and has n = 1).

Problem 5.4. Generalize Theorem 5.3 to arbitrary noetherian coefficient rings.

This is known for d = 1 by [CE], but is not known in general.

Problem 5.5. Determine the optimal bound for regularity in terms of the t’s.

For d = 1, the bound in [CE] is optimal, but for d > 1 the optimal bounds are unknown,
even in characteristic 0. In fact, it is not even known what the optimal value of n in
Theorem 5.3 is when d > 1.

5.3. The duality theorem. Recall that the category Db
fg(A) admits a semi-orthogonal

decomposition 〈Db
fg(A)0, . . . ,D

b
fg(A)d〉 and that RΠr is the functor that projects onto the rth

piece of this semi-orthogonal decomposition.

Theorem 5.6 (Duality theorem). Let M ∈ Db
fg(A). Then there is a canonical isomorphism

F(Πr(M)) = Πd−r(F(M)),

where F is the Fourier transform (§3.2).

In other words, the Fourier transform “reverses” the semi-orthogonal decomposition.
There are various other manifestations of this duality. We mention one more:

Theorem 5.7. Let M be a finitely generated A-module, and write HM(t) =
∑d

r=0 pr(t)e
rt

with pr(t) a polynomial. Then HF(M)(t) =
∑d

r=0 pd−r(−t)ert.
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5.4. The definition of tca. We have not given the actual definition of tca yet, so we
include it here. A twisted commutative algebra (tca) over a commutative ring k is a
unital associative graded k-algebra A =

⊕
n≥0An equipped with a k-linear action of the

symmetric group Sn on An such that

(a) The multiplication map An × Am → An+m is Sn × Sm equivariant, and
(b) Given x ∈ An and y ∈ Am we have xy = (yx)τ , where τ = τm,n ∈ Sn+m is defined by

τ(i) =

{
i+ n if 1 ≤ i ≤ m,

i−m if m+ 1 ≤ i ≤ n+m.

This is the “twisted commutativity” condition.

The twisted commutative algebra freely generated by d elements of degree 1 is identified
with the tensor algebra on kd, that is, An = (kd)⊗n with the obvious Sn action and multi-
plication. The equivalence between modules over this tca and representations of FId over
k is explained in [SS3, Proposition 7.2.5]. If k has characteristic 0 the Schur–Weyl gives
an equivalence between symmetric group representations and polynomial representations of
GL∞, and under this equivalence the tensor algebra tca on Cd corresponds to the algebra
A(d) we have been using in this paper.
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