Math 592: Algebraic Topology, Winter 2023
 Problem Set 9

Due Monday, March 27, 2023 at 11:59pm

1. (a) Let $f, g:(X, A) \rightarrow(Y, B)$ be maps of pairs. As we saw in class, there are induced morphisms of singular chain complexes $f_{\sharp}, g_{\sharp}: C \bullet(X, A) \rightarrow C \bullet(Y, B)$. Show that f_{\sharp} and g_{\sharp} are homotopic as maps of chain complexes if f and g are homotopic as maps of pairs, i.e. if there exists a homotopy $H: X \times I \rightarrow Y$ from f to g such that $H_{t}(A) \subset B$ for all $t \in I$. Conclude that if f and g are homotopic as maps of pairs, then the induced maps $f_{*}, g_{*}: \mathrm{H}_{n}(X, A) \rightarrow \mathrm{H}_{n}(Y, B)$ on relative homology are equal.
(b) Let $B \subset A$ be a subspace such that B is a strong deformation retract of A. Show that $\mathrm{H}_{n}(A, B)=0$ for all n.
(c) Let X be a space with subspaces $B \subset A \subset X$. Show that there is a long exact sequence associated to the triple (X, A, B), relating their relative homologies, of the following form:

$$
\cdots \rightarrow \mathrm{H}_{n}(A, B) \rightarrow \mathrm{H}_{n}(X, B) \rightarrow \mathrm{H}_{n}(X, A) \xrightarrow{\delta} \mathrm{H}_{n-1}(A, B) \rightarrow \cdots
$$

such that when $B=\varnothing$ this recovers the long exact sequence of the pair (X, A).
(d) Continue to assume that (X, A, B) is a triple with $B \subset A \subset X$. Prove that if B is a strong deformation retract of A, then the map $\mathrm{H}_{n}(X, B) \rightarrow \mathrm{H}_{n}(X, A)$ induced by the inclusion $(X, B) \rightarrow(X, A)$ is an isomorphism for all n.

Remark. In class, we used the above isomorphism in our proof that when (X, A) is a good pair then $\mathrm{H}_{n}(X, A) \cong \widetilde{\mathrm{H}}_{n}(X / A)$.
2. Let

be a commutative diagram of morphisms of chain complexes, where the rows are short exact sequences. Show that there is a commutative diagram relating the long exact sequences associated to the rows:

3. Let Σ_{g} be a compact orientable genus g surface. By choosing a suitable cover $\Sigma_{g}=A \cup B$ by open sets and using excision and a long exact sequence, compute the homology groups $\mathrm{H}_{n}\left(\Sigma_{g}\right)$ for all n.
4. Let X be the space obtained from a compact orientable genus 4 surface by attaching a copy of D^{2} along the identity map $\partial D^{2}=S^{1} \rightarrow S^{1}$ for each of the copies of S^{1} shown below:

Compute $\mathrm{H}_{n}(X)$ for all n.
5. (a) Show that $X=S^{1} \times S^{1}$ and $Y=S^{1} \vee S^{1} \vee S^{2}$ satisfy $\mathrm{H}_{n}(X) \cong \mathrm{H}_{n}(Y)$ for all n.
(b) Show that X and Y are not homotopy equivalent.
(c) Let \tilde{X} and \tilde{Y} be the universal covers of X and Y. Compute the homology groups $\mathrm{H}_{n}(\tilde{X})$ and $\mathrm{H}_{n}(\tilde{Y})$. (In particular, you will see that homology groups of \tilde{X} and \tilde{Y} are not the same, despite this being true for X and Y.)
6. Note that $\mathrm{H}_{n}\left(\Delta^{n}, \partial \Delta^{n}\right) \cong \widetilde{\mathrm{H}}_{n}\left(\Delta^{n} / \partial \Delta^{n}\right) \cong \mathbf{Z}$, since $\Delta^{n} / \partial \Delta^{n} \cong S^{n}$. Let $\sigma \in C_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$ be the n-cycle given by the identity map $\sigma=\mathrm{id}: \Delta^{n} \rightarrow \Delta^{n}$. Read the proof from Example 2.23 in Hatcher that its class in homology $[\sigma] \in \mathrm{H}_{n}\left(\Delta^{n}, \partial \Delta^{n}\right) \cong \mathbf{Z}$ is a generator.

Convince yourself that this fills in the omitted detail in our proof from class that singular and simplicial homology are isomorphic; namely, in the notation from class, show that the map $\mathrm{H}_{n}^{\Delta}\left(X^{k}, X^{k-1}\right) \rightarrow \mathrm{H}_{n}\left(X^{k}, X^{k-1}\right)$ is an isomorphism, by using the previous paragraph and the descriptions of $\mathrm{H}_{n}^{\Delta}\left(X^{k}, X^{k-1}\right)$ and $\mathrm{H}_{n}\left(X^{k}, X^{k-1}\right)$ from class.
You do not need to submit anything for this problem.
7. Read the proof of Proposition 2.21 in Hatcher, which was left as a blackbox in our proof of excision in class.
You do not need to submit anything for this problem, and it is optional in the sense that accepting it as a blackbox should not affect your understanding of the rest of the material in the class.

