Math 592: Algebraic Topology, Winter 2023 Problem Set 6

Due Monday, February 20, 2023 at 11:59pm

- Let p: Z → X and q: Y → X be covering spaces, where Z and Y are path-connected and X is locally path connected. Suppose that f: Z → Y is a morphism of covering spaces, i.e. p = q ∘ f. Prove that f: Z → Y is a covering space.
- 2. Determine explicitly all path-connected covering spaces of $\mathbf{RP}^2 \times \mathbf{RP}^2$ up to isomorphism of covering spaces (without basepoints).
- 3. Let $X = S^1 \vee S^1$. Determine explicitly all path-connected covering spaces $\tilde{X} \to X$ of degree 2 and degree 3, up to isomorphism of covering spaces (without basepoints). For each of these covering spaces, determine whether or not it is Galois¹.
- 4. For an integer $n \ge 1$, let F_n denote the free group on a set of n elements. We call n the rank of F_n (which is also the rank of its abelianization and hence an intrinsic invariant of the group F_n).
 - (a) Prove that F_4 does not have a finite-index subgroup isomorphic to F_8 .
 - (b) Construct a finite-index subgroup H of F_4 which is isomorphic to F_7 , determine a free generating set of elements for H, and decide whether H is normal.
- 5. Let X be a path-connected, locally path-connected, semilocally simply-connected space. We say that a path-connected covering space $\tilde{X} \to X$ is *abelian* if it is Galois and the group $\operatorname{Aut}(\tilde{X}/X)$ is abelian.
 - (a) Prove that there exists an abelian covering space $p: \tilde{X}^{ab} \to X$, unique up to isomorphism, satisfying the following property: for any abelian covering space $q: Y \to X$, there exists a morphism $f: \tilde{X}^{ab} \to Y$ of covering spaces of X (i.e. $p = q \circ f$). We call \tilde{X}^{ab} the universal abelian cover of X.
 - (b) Describe explicitly the universal abelian cover of $S^1 \vee S^1$.
- 6. (a) Let X be a Hausdorff space. Let G be a finite group which acts on X freely and continuously. Prove that the quotient map X → X/G is a covering space.
 Hint: Verify that the criterion from Problem 2 on Problem Set 3 holds.
 - (b) Consider the 3-sphere, regarded as a subspace $S^3 \subset \mathbf{C}^2 \cong \mathbf{R}^4$. For fixed coprime integers p and q, verify that there is a free continuous action of \mathbf{Z}/p on S^3 , where $1 \in \mathbf{Z}/p$ acts by $(z_1, z_2) \mapsto (e^{2\pi i/p} z_1, e^{2\pi i q/p} z_2)$ for $(z_1, z_2) \in S^3 \subset \mathbf{C}^2$. Let M be the quotient of S^3 by this action of \mathbf{Z}/p . Compute $\pi_1(M)$.

¹Recall Hatcher uses the terminology "normal covering space" for what we call a "Galois covering space".