Math 592: Algebraic Topology, Winter 2023 Problem Set 5

Due Monday, February 13, 2023 at 8pm

- 1. (True/False on covering spaces). For each of the following statements, prove if it is true or give a counterexample if it is false.
 - (a) If $p: \tilde{X} \to X$ is a covering space and X is path-connected, then so is \tilde{X} .
 - (b) If $p: \tilde{X} \to X$ is a covering space, $Y \subset X$ is a subspace, and $\tilde{Y} = p^{-1}(Y)$, then $p|_{\tilde{Y}}: \tilde{Y} \to Y$ is a covering space.
 - (c) A covering space is an open map.
 - (d) A covering space $p: \tilde{X} \to X$ is a local homeomorphism, i.e. for each $x \in \tilde{X}$ there is an open neighborhood such that p induces a homeomorphism $U \cong p(U)$.
 - (e) A local homeomorphism is a covering space.
- 2. (Subgroups of free groups are free).
 - (a) Let X be a graph, i.e. a 1-dimensional CW complex. Let $p: \tilde{X} \to X$ be a covering space. Show that \tilde{X} is also a graph.
 - (b) Using the preceding statement, show that every subgroup of a free group is a free group.
- 3. (Large subgroups of free groups). Let F_2 be the free group on 2 elements, and let F_{∞} the free group on a countably infinite collection of elements. Prove that there is an injective group homomorphism $F_{\infty} \to F_2$.
- 4. (Degree of a covering space in terms of its subgroup). Let $p: \tilde{X} \to X$ be a covering space with \tilde{X} and X path-connected. Let $\tilde{x}_0 \in \tilde{X}$, let $x_0 = p(\tilde{x}_0)$, and let $H = p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \subset \pi_1(X, x_0)$. Determine the degree of $p: \tilde{X} \to X$ (as defined in Problem Set 3, #1) in terms of the subgroup $H \subset \pi_1(X, x_0)$.
- 5. (Example of a universal cover). Construct explicitly a covering space of $T^2 \vee S^2$ which is simply connected, where T^2 denotes the torus.
- 6. (Maps to graphs). Let G be a graph, i.e. a 1-dimensional CW complex. Prove that if X is a path-connected, locally path-connected space such that $\pi_1(X)$ is finite, then any continuous map $X \to G$ is *nullhomotopic*, i.e. homotopic to a constant map.