Math 592: Algebraic Topology, Winter 2023
 Problem Set 3

Due Monday, January 30, 2023 at 8pm

1. (Degree of covering space). Let $p: \tilde{X} \rightarrow X$ be a covering space. Prove that the function $X \rightarrow \mathbf{Z}_{\geq 0} \cup\{\infty\}$ given by $x \mapsto\left|p^{-1}(x)\right|$ (where $\left|p^{-1}(x)\right|$ denotes the cardinality of $p^{-1}(x)$) is constant on connected components of X. In particular, if X is connected then $\left|p^{-1}(x)\right|$ does not depend on $x \in X$, and is known as the degree of the covering space $p: \tilde{X} \rightarrow X$.
2. (Covering spaces from group quotients). Let G be a group equipped with the discrete topology. Let X be a topological space. We say that G acts continuously on X if we are given an action of the group G on the set X (in the usual sense) such that the action map $G \times X \rightarrow X,(g, x) \mapsto g(x)$ is continuous.
(a) In the above situation, assume that for every $x \in X$, there exists an open neighborhood $x \in U \subset X$ such that $g(U) \cap U=\varnothing$ for any non-identity element $1 \neq g \in G$. Prove that the quotient map $X \rightarrow X / G$ is a covering space of degree $|G|$.
(b) Construct a covering space $S^{n} \rightarrow \mathbf{R} \mathbf{P}^{n}$ of degree 2 .
3. (Abelianization). The purpose of this problem is to review a basic construction from algebra that turns any group into an abelian group.
(a) Let G be a group. The commutator subgroup $[G, G]$ is defined as the subgroup generated by elements of the form $[g, h]:=g h g^{-1} h^{-1}$ for $g, h \in G$ (i.e. $[G, G]$ is the smallest subgroup containing all of these elements). Show that $[G, G] \subset G$ is normal, and the quotient group

$$
G^{\mathrm{ab}}:=G /[G, G]
$$

is abelian. The group G^{ab} is called the abelianization of G.
(b) Show that the quotient map $\pi: G \rightarrow G^{\text {ab }}$ satisfies the following universal property: For any abelian group H and group homomorphism $f: G \rightarrow H$, there exists a unique group homomorphism $\bar{f}: G^{\mathrm{ab}} \rightarrow H$ such that $f=\bar{f} \circ \pi$.
(c) Write F_{n} for the free group on n elements, i.e. F_{n} is the free product of n copies of Z. Compute F_{n}^{ab} and use it to prove that $F_{n}^{\mathrm{ab}} \not \equiv F_{m}^{\mathrm{ab}}$ for $n \neq m$.
4. (Group presentations). The purpose of this problem is to review a method for representing groups in terms of generators and relations.

For a set S we write $F_{S}=*_{s \in S} \mathbf{Z}$ for the free product of S copies of \mathbf{Z}; we typically regard the copy of \mathbf{Z} indexed by $s \in S$ as an infinite cyclic group written multiplicatively, with generator denoted s, so that elements of F_{S} can be expressed as "words" in the symbols s^{n} for $s \in S, n \in \mathbf{Z}$. Let $R \subset F_{S}$ be a subset of elements. We write $\langle S \mid R\rangle$ for the quotient of F_{S} by the normal subgroup generated by R. In this construction, we call S the generators and R the relations. If G is a group then an isomorphism $\langle S \mid R\rangle \cong G$ is called a presentation of G. For example, there is a presentation $\left\langle a \mid a^{n}\right\rangle \cong \mathbf{Z} / n$ which sends a to $1 \in \mathbf{Z} / n$.
(a) Show that there exists a presentation of any group G.
(b) Let $\phi_{1}: H \rightarrow G_{1}$ and $\phi_{2}: H \rightarrow G_{2}$ be group homomorphisms. Let $G_{1}=\left\langle S_{1} \mid R_{1}\right\rangle$, $G_{2}=\left\langle S_{2} \mid R_{2}\right\rangle$, and $H=\left\langle S_{3} \mid R_{3}\right\rangle$ be group presentations. Construct a presentation for the pushout $G_{1} *_{H} G_{2}$ in terms of the given presentations.
(c) Describe the abelianization of $\langle S \mid R\rangle$ as the cokernel of a map between free abelian groups (in terms of S and R). Using this, compute explicitly the abelianization of $\left\langle a, b \mid a^{2}, b^{2},(a b)^{3}\right\rangle$.
5. (π_{1} of punctured manifolds). Let M be a path-connected topological manifold of dimension $n .{ }^{1}$ Let $p \in M$ be a point.
(a) Show that $M \backslash\{p\}$ is path-connected if $n \geq 2$.
(b) Assume $n \geq 2$, let $q \neq p$, and consider the homomorphism $\pi_{1}(M \backslash\{p\}, q) \rightarrow \pi_{1}(M, q)$ induced by the inclusion $M \backslash\{p\} \rightarrow M$. Prove that it is an isomorphism if $n \geq 3$, and that it is surjective but not necessarily injective when $n=2$.
6. (π_{1} of complement of lines in \mathbf{R}^{n}). Let $n \geq 3$. Let X be the complement of $m \geq 1$ distinct lines $L_{1}, \ldots, L_{m} \subset \mathbf{R}^{n}$ which pass through the origin. Show that X is pathconnected and compute $\pi_{1}(X)$.
7. $\left(\pi_{1}\left(\mathbf{R P}^{n}\right)\right)$. Compute $\pi_{1}\left(\mathbf{R P}^{n}\right)$ for $n \geq 2$ in two different ways:
(a) By mimicking our computation of $\pi_{1}\left(S^{1}\right)$ using the covering space $p: S^{n} \rightarrow \mathbf{R P}^{n}$ from Problem 1.
(b) By using Van Kampen's theorem and induction on n.
8. (π_{1} of gluing of two tori). Let $x_{0} \in S^{1}$ be a point, and let X be the space obtained from $\left(S^{1} \times S^{1}\right) \sqcup\left(S^{1} \times S^{1}\right)$ by identifying the circle $S^{1} \times\left\{x_{0}\right\} \subset S^{1} \times S^{1}$ in the first torus with the corresponding circle $S^{1} \times\left\{x_{0}\right\} \subset S^{1} \times S^{1}$ in the second. Compute $\pi_{1}(X)$.

[^0]
[^0]: ${ }^{1}$ For the purpose of this problem, all you need to know about a topological manifold of dimension n is that if M is one, then for any point $p \in M$, there exists a neighborhood $p \in U \subset M$ such that U is homeomorphic to \mathbf{R}^{n}.

