Math 592: Algebraic Topology, Winter 2023
 Problem Set 2

Due Monday, January 23, 2023 at 8pm

1. (Punctured surfaces). Let Σ_{g} be a compact orientable genus g surface and let $p \in \Sigma_{g}$ be a point. Prove that $\Sigma_{g} \backslash\{p\}$ is homotopy equivalent to a wedge sum of copies of S^{1}.
2. (Real projective space as a $\mathbf{C W}$ complex). Let $\mathbf{R P}^{n}$ be the n-dimensional real projective space, defined as the quotient space of $\mathbf{R}^{n+1} \backslash\{0\}$ by the scaling action of $\mathbf{R}^{\times}=\mathbf{R} \backslash\{0\}$, i.e. the quotient by the equivalence relation $x \sim \lambda x$ for $\lambda \in \mathbf{R}^{\times}$. Show that $\mathbf{R P}^{n}$ has the structure of a CW complex with one cell of each dimension i for $0 \leq i \leq n$.
3. (Infinite-dimensional sphere). The infinite-dimensional sphere S^{∞} is the space

$$
S^{\infty}=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mid x_{i} \in \mathbf{R}, \text { all but finitely many } x_{i} \text { are zero, and } \sum_{i} x_{i}^{2}=1\right\}
$$

with the topology where $U \subset S^{\infty}$ is open if and only if $U \cap S^{n}$ is open for every $n \geq 0$, where $S^{n} \subset S^{\infty}$ is embedded as the subset where $x_{i}=0$ for $i \geq n+2$.
(a) Show that S^{∞} is a CW complex.
(b) Show that S^{∞} is contractible.

Hint: First show that the identity map of S^{∞} is homotopic to the shifting map $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$, and then show the latter is homotopic to a constant map.
4. (π_{1} on the homotopy category of pointed spaces). Let Top_{*} denote the category of pointed spaces, defined as follows:

- An object of Top_{*} is a pointed space $\left(X, x_{0}\right)$, i.e. a topological space X together with a chosen point $x_{0} \in X$.
- A morphism $\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a continuous map $f: X \rightarrow Y$ such that $f\left(x_{0}\right)=y_{0}$.

Let hTop_{*} denote the homotopy category of pointed spaces, defined as follows:

- The objects of hTop_{*} are the same as those of Top_{*}.
- Given morphisms $f, g:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ in Top $_{*}$, the relation " f is homotopic to g relative to $\left\{x_{0}\right\} \subset X "$ is an equivalence relation, and $\operatorname{Hom}_{\mathrm{hTop}_{*}}\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right)$ is defined as the set of equivalence classes for this equivalence relation.
(a) You do not need to write this up, but convince yourself that hTop_{*} as defined above is indeed a category. (You already did a very similar exercise on Problem Set 1.)
(b) If $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a morphism of pointed spaces, show that there is a welldefined group homomorphism $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ given by $f([\alpha])=[f \circ \alpha]$.
(c) Show that there is a functor $\pi_{1}: \mathrm{Top}_{*} \rightarrow$ Grp from the category of pointed spaces to the category of groups given on objects by $\pi_{1}\left(X, x_{0}\right)$ and on morphisms by f_{*} defined above.
(d) Show that $\pi_{1}: \operatorname{Top}_{*} \rightarrow$ Grp factors through the natural functor $\operatorname{Top}_{*} \rightarrow \mathrm{hTop} p_{*}$.

5. (Homotopy type of wedge sums). Given pointed spaces $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$, we write $\left(X, x_{0}\right) \vee\left(Y, y_{0}\right)$ for their wedge sum taken at the points x_{0} and y_{0}, i.e

$$
\left(X, x_{0}\right) \vee\left(Y, y_{0}\right)=\frac{X \sqcup Y}{x_{0} \sim y_{0}} .
$$

We say that $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ are pointed homotopy equivalent, denoted $\left(X, x_{0}\right) \sim\left(Y, y_{0}\right)$, if they are isomorphic in the category hTop_{*}.
(a) Prove that if $\left(X, x_{0}\right) \sim\left(X^{\prime}, x_{0}^{\prime}\right)$ and $\left(Y, y_{0}\right) \sim\left(Y^{\prime}, y_{0}^{\prime}\right)$, then

$$
\left(X, x_{0}\right) \vee\left(Y, y_{0}\right) \sim\left(X^{\prime}, x_{0}^{\prime}\right) \vee\left(Y^{\prime}, y_{0}^{\prime}\right) .
$$

(b) Let X and Y be path-connected CW complexes. Show that for any points $x_{0}, x_{1} \in X$ and $y_{0}, y_{1} \in Y$, we have

$$
\left(X, x_{0}\right) \vee\left(Y, y_{0}\right) \sim\left(X, x_{1}\right) \vee\left(Y, y_{1}\right)
$$

Hint: First show that if X is a CW complex and $x_{0} \in X$ is any point (not necessarily a 0 -cell), then there exists a CW complex structure on X for which x_{0} is a 0 -cell. Then apply a theorem from class.
6. (π_{1} commutes with products). Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed spaces. Construct an isomorphism of groups $\pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right) \cong \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$.

7. (π_{1} of a topological group).

(a) Let A be a set equipped with two binary operations $*$ and \bullet, i.e. we are given two maps $A \times A \rightarrow A$ whose action on elements are denoted by $(a, b) \mapsto a * b$ and $(a, b) \mapsto a \bullet b$. Assume that:

- There exist units 1_{*} and 1 . for each operation, i.e. elements such that

$$
1_{*} * a=a=a * 1_{*} \quad \text { and } \quad 1 \bullet a=a=a \bullet 1 \bullet
$$

for all $a \in A$.

- $(a \bullet b) *(c \bullet d)=(a * c) \bullet(b * d)$ for all $a, b, c, d \in A$.

Prove that the operations * and \bullet are equal, and they are commutative, i.e. $a * b=b * a$ for all $a, b \in A$.
(b) Let G be a topological group, i.e. G is a group with the structure of a topological space such that the multiplication map $G \times G \rightarrow G,(g, h) \mapsto g h$, and inverse map $G \rightarrow G, g \mapsto g^{-1}$, are both continuous. Let $e \in G$ be the identity element of G. Prove that $\pi_{1}(G, e)$ is abelian.

