Math 592: Algebraic Topology, Winter 2023 Problem Set 2

Due Monday, January 23, 2023 at 8pm

- 1. (Punctured surfaces). Let Σ_g be a compact orientable genus g surface and let $p \in \Sigma_g$ be a point. Prove that $\Sigma_g \setminus \{p\}$ is homotopy equivalent to a wedge sum of copies of S^1 .
- 2. (Real projective space as a CW complex). Let \mathbb{RP}^n be the *n*-dimensional real projective space, defined as the quotient space of $\mathbb{R}^{n+1} \setminus \{0\}$ by the scaling action of $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$, i.e. the quotient by the equivalence relation $x \sim \lambda x$ for $\lambda \in \mathbb{R}^{\times}$. Show that \mathbb{RP}^n has the structure of a CW complex with one cell of each dimension *i* for $0 \leq i \leq n$.
- 3. (Infinite-dimensional sphere). The infinite-dimensional sphere S^{∞} is the space

$$S^{\infty} = \left\{ (x_1, x_2, x_3, \dots) \middle| x_i \in \mathbf{R}, \text{ all but finitely many } x_i \text{ are zero, and } \sum_i x_i^2 = 1 \right\}$$

with the topology where $U \subset S^{\infty}$ is open if and only if $U \cap S^n$ is open for every $n \ge 0$, where $S^n \subset S^{\infty}$ is embedded as the subset where $x_i = 0$ for $i \ge n+2$.

- (a) Show that S^{∞} is a CW complex.
- (b) Show that S^{∞} is contractible.

Hint: First show that the identity map of S^{∞} is homotopic to the shifting map $(x_1, x_2, x_3, ...) \mapsto (0, x_1, x_2, x_3, ...)$, and then show the latter is homotopic to a constant map.

- 4. (π_1 on the homotopy category of pointed spaces). Let Top_{*} denote the category of *pointed spaces*, defined as follows:
 - An object of Top_{*} is a pointed space (X, x_0) , i.e. a topological space X together with a chosen point $x_0 \in X$.
 - A morphism $(X, x_0) \to (Y, y_0)$ is a continuous map $f: X \to Y$ such that $f(x_0) = y_0$.

Let hTop_{*} denote the homotopy category of pointed spaces, defined as follows:

- The objects of hTop_{*} are the same as those of Top_{*}.
- Given morphisms $f, g: (X, x_0) \to (Y, y_0)$ in Top_{*}, the relation "f is homotopic to g relative to $\{x_0\} \subset X$ " is an equivalence relation, and $\operatorname{Hom}_{\operatorname{hTop}_*}((X, x_0), (Y, y_0))$ is defined as the set of equivalence classes for this equivalence relation.
- (a) You do not need to write this up, but convince yourself that hTop_{*} as defined above is indeed a category. (You already did a very similar exercise on Problem Set 1.)
- (b) If $f: (X, x_0) \to (Y, y_0)$ is a morphism of pointed spaces, show that there is a welldefined group homomorphism $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ given by $f([\alpha]) = [f \circ \alpha]$.

- (c) Show that there is a functor $\pi_1: \operatorname{Top}_* \to \operatorname{Grp}$ from the category of pointed spaces to the category of groups given on objects by $\pi_1(X, x_0)$ and on morphisms by f_* defined above.
- (d) Show that $\pi_1: \operatorname{Top}_* \to \operatorname{Grp}$ factors through the natural functor $\operatorname{Top}_* \to \operatorname{hTop}_*$.
- 5. (Homotopy type of wedge sums). Given pointed spaces (X, x_0) and (Y, y_0) , we write $(X, x_0) \lor (Y, y_0)$ for their wedge sum taken at the points x_0 and y_0 , i.e

$$(X, x_0) \lor (Y, y_0) = \frac{X \sqcup Y}{x_0 \sim y_0}.$$

We say that (X, x_0) and (Y, y_0) are *pointed homotopy equivalent*, denoted $(X, x_0) \sim (Y, y_0)$, if they are isomorphic in the category hTop_{*}.

(a) Prove that if $(X, x_0) \sim (X', x'_0)$ and $(Y, y_0) \sim (Y', y'_0)$, then

$$(X, x_0) \lor (Y, y_0) \sim (X', x'_0) \lor (Y', y'_0)$$

(b) Let X and Y be path-connected CW complexes. Show that for any points $x_0, x_1 \in X$ and $y_0, y_1 \in Y$, we have

$$(X, x_0) \lor (Y, y_0) \sim (X, x_1) \lor (Y, y_1).$$

Hint: First show that if X is a CW complex and $x_0 \in X$ is any point (not necessarily a 0-cell), then there exists a CW complex structure on X for which x_0 is a 0-cell. Then apply a theorem from class.

- 6. (π_1 commutes with products). Let (X, x_0) and (Y, y_0) be pointed spaces. Construct an isomorphism of groups $\pi_1(X, x_0) \times \pi_1(Y, y_0) \cong \pi_1(X \times Y, (x_0, y_0))$.
- 7. (π_1 of a topological group).
 - (a) Let A be a set equipped with two binary operations * and \bullet , i.e. we are given two maps $A \times A \to A$ whose action on elements are denoted by $(a, b) \mapsto a * b$ and $(a, b) \mapsto a \bullet b$. Assume that:
 - There exist units 1_* and 1_{\bullet} for each operation, i.e. elements such that

$$1_* * a = a = a * 1_*$$
 and $1_{\bullet} \bullet a = a = a \bullet 1_{\bullet}$

for all $a \in A$.

• $(a \bullet b) * (c \bullet d) = (a * c) \bullet (b * d)$ for all $a, b, c, d \in A$.

Prove that the operations * and \bullet are equal, and they are commutative, i.e. a * b = b * a for all $a, b \in A$.

(b) Let G be a topological group, i.e. G is a group with the structure of a topological space such that the multiplication map $G \times G \to G, (g, h) \mapsto gh$, and inverse map $G \to G, g \mapsto g^{-1}$, are both continuous. Let $e \in G$ be the identity element of G. Prove that $\pi_1(G, e)$ is abelian.