Math 592: Algebraic Topology, Winter 2023 Problem Set 12

Due Monday, April 17, 2023 at 11:59pm

- 1. Fill out the course evaluation for this class, please!
- 2. Let $0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$ be a short exact sequence of abelian groups.
 - (a) Prove that the following conditions are equivalent:
 - i. There exists a homomorphism $p: B \to A$ such that $p \circ i = id_A$.
 - ii. There exists a homomorphism $s: C \to B$ such that $j \circ s = id_C$.
 - iii. There exists an isomorphism $\phi \colon B \xrightarrow{\sim} A \oplus C$ such that the diagram

$$\begin{array}{c} 0 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 0 \\ & \downarrow^{\mathrm{id}_A} \downarrow \phi \downarrow & \downarrow^{\mathrm{id}_C} \downarrow \\ 0 \longrightarrow A \xrightarrow{\iota} A \oplus C \xrightarrow{\pi} C \longrightarrow 0 \end{array}$$

commutes, where $\iota(a) = (a, 0)$ and $\pi((a, c)) = c$.

When the above equivalent conditions hold, we say the short exact sequence splits.

- (b) Show that if C is a free abelian group (i.e. C is isomorphic to a direct sum of copies of \mathbf{Z}), then $B \cong A \oplus C$.
- 3. Determine, with the proof, the minimal number of 2-simplices in a simplicial complex structure on S^2 .
- 4. Let C_{\bullet} be a chain complex of finitely generated abelian groups, with $C_n = 0$ for all but finitely many n. Let $\phi: C_{\bullet} \to C_{\bullet}$ be a morphism of chain complexes. Then for every n we have a map $\phi_n: C_n \to C_n$ as well as a map $\phi_*: H_n(C_{\bullet}) \to H_n(C_{\bullet})$. Prove that there is an equality

$$\sum_{n} (-1)^{n} \operatorname{tr}(\phi_{n} \colon C_{n} \to C_{n}) = \sum_{n} (-1)^{n} \operatorname{tr}(\phi_{*} \colon \operatorname{H}_{n}(C_{\bullet}) \to \operatorname{H}_{n}(C_{\bullet}))$$

Remark. We used this in our proof of the Lefschetz fixed point theorem.

5. Let X be a finite CW complex. Let k be a field. Show that the Euler characteristic of X can be computed by the formula

$$\chi(X) = \sum_{n} (-1)^n \dim_k \operatorname{H}_n(X;k),$$

where $\dim_k H_n(X;k)$ denotes the dimension of $H_n(X;k)$ as a k-vector space.

Remark. Above, we are using the observation that for a space Y and field k, the homology groups $H_n(Y; k)$ naturally have the structure of k-vector spaces. Please convince yourself of this.

- 6. Let X be a topological space. Show that the following two conditions are equivalent:
 - (a) For all i and all primes p, $\widetilde{\mathrm{H}}_i(X;\mathbf{Z}/p) = 0$.
 - (b) For all i, $\widetilde{H}_i(X)$ is the abelian group underlying a **Q**-vector space.