Math 592: Algebraic Topology, Winter 2023 Problem Set 11

Due Monday, April 10, 2023 at 11:59pm

- 1. Let \mathbb{CP}^n be complex projective *n*-space, i.e. the quotient of $\mathbb{C}^{n+1} \setminus \{0\}$ by the scaling action of nonzero complex numbers \mathbb{C}^{\times} .
 - (a) \mathbb{CP}^n has a CW complex structure with one cell e^i of each even dimension *i* for $0 \leq i \leq 2n$. Please convince yourself that this is true, or read about it in Hatcher Example 0.6. You do not need to submit anything for this part of the problem.
 - (b) Compute the homology $H_i(\mathbb{CP}^n)$ for all *i*.
 - (c) Determine, with proof, the minimal number of cells in a CW decomposition of \mathbb{CP}^{n} .
 - (d) Consider the quotient map $\pi: \mathbb{C}^3 \setminus \{0\} \to \mathbb{CP}^2$. Does there exist a section of π , i.e. a continuous map $s: \mathbb{CP}^2 \to \mathbb{C}^3 \setminus \{0\}$ such that $\pi \circ s = \mathrm{id}_{\mathbb{CP}^2}$? If yes, construct such an s; if no, prove that none exists.
- 2. Let X and Y be CW complexes. A continuous map $f: X \to Y$ is called *cellular* if it takes the *n*-skeleton of X to the *n*-skeleton of Y, i.e. $f(X^n) \subset Y^n$, for all n.
 - (a) Show a cellular map f induces a natural morphism $C^{CW}_{\bullet}(X) \to C^{CW}_{\bullet}(Y)$ between the cellular chain complexes of X and Y, and hence a map $f_* \colon \mathrm{H}^{CW}_n(X) \to \mathrm{H}^{CW}_n(Y)$ on cellular homology for all n.
 - (b) Show that under the isomorphism $\mathrm{H}_n^{\mathrm{CW}}(X) \cong \mathrm{H}_n(X)$ between cellular and singular homology, the map f_* constructed above corresponds to the usual pushforward map $f_* \colon \mathrm{H}_n(X) \to \mathrm{H}_n(Y)$ on singular homology.
- 3. (a) For finite CW complexes X and Y, show that the Euler characteristic of the product satisfies $\chi(X \times Y) = \chi(X)\chi(Y)$. Use this to compute the Euler characteristic of an *n*-dimensional torus $(S^1)^n$ and of $\mathbb{RP}^n \times \Sigma_g$ where Σ_g is a compact orientable surface of genus g.
 - (b) If X is a finite connected CW complex and $p: \tilde{X} \to X$ is a covering space of finite degree d, explain how to construct an induced finite CW complex structure on \tilde{X} . Using this, prove that $\chi(\tilde{X}) = d\chi(X)$.
 - (c) Show that there is no free continuous action of $\mathbb{Z}/7$ on \mathbb{CP}^5 .
 - (d) Suppose that $p: \Sigma_g \to \Sigma_h$ is a covering space, where Σ_g and Σ_h are compact orientable surfaces of genus g and h. Prove that g = d(h-1) + 1 where $d = \deg(p)$.

Remark. Conversely, given g and h satisfying g = d(h - 1) + 1, it is possible to construct a covering space $p: \Sigma_g \to \Sigma_h$ of degree d (Hatcher Example 1.41).

4. Let X be a 2-dimensional CW complex with one 0-cell, four 1-cells a, b, c, d, and two 2-cells attached along the loops a^2bc and ab^2d . Compute the homology of X.

- 5. Let $n \ge 1$ and let $f: \mathbb{CP}^n \to \mathbb{CP}^n$ be a continuous automorphism satisfying $f^d = \mathrm{id}_{\mathbb{CP}^n}$ for some $d \ge 1$. Show that if d is odd, then f must have a fixed point.
- 6. Let $n \ge 1$, let $p: S^n \to X$ be a covering space, and assume that $f: S^n \to S^n$ is an automorphism of the covering space p. Determine the set of possible degrees of f.