Math 592: Algebraic Topology, Winter 2023
 Problem Set 10

Due Monday, April 3, 2023 at 11:59pm

1. Let X be a topological space and let $A, B \subset X$ be subspaces such that $X=\operatorname{int}(A) \cup \operatorname{int}(B)$ is the union of their interiors.
(a) If $A \cap B$ is path-connected, use Mayer-Vietoris to show that $\mathrm{H}_{1}(X)$ is isomorphic to the cokernel of the map

$$
\begin{equation*}
\left(j_{A *},-j_{B *}\right): \mathrm{H}_{1}(A \cap B) \rightarrow \mathrm{H}_{1}(A) \oplus \mathrm{H}_{1}(B) \tag{1}
\end{equation*}
$$

where $j_{A}: A \rightarrow A \cap B$ and $j_{B}: B \rightarrow A \cap B$ are the inclusions.
(b) Now suppose that $A, B \subset X$ are open, and A, B, and $A \cap B$ are path-connected. Then Van Kampen together with our description of H_{1} as the abelianization of π_{1} gives

$$
\mathrm{H}_{1}(X) \cong\left(\pi_{1}(A) *_{\pi_{1}(A \cap B)} \pi_{1}(B)\right)^{\mathrm{ab}} .
$$

Prove directly that the right-hand side is isomorphic to the cokernel of the map (1). Thus this description is consistent with the one obtained from Mayer-Vietoris.
2. For a topological space X, its suspension $S X$ is defined as the quotient of $X \times I$ obtained by collapsing $X \times\{0\}$ to one point and collapsing $X \times\{1\}$ to another point. Prove that for all n there are isomorphisms $\widetilde{\mathrm{H}}_{n}(S X) \cong \widetilde{\mathrm{H}}_{n-1}(X)$.
3. Fix an integer m. Let X be the space obtained from $S^{1} \times S^{1}$ by attaching a Mobius strip M along the map $\partial M=S^{1} \rightarrow S^{1} \times S^{1}$ given by $z \mapsto\left(z^{m}, 1\right)$, where we regard $S^{1} \subset \mathbf{C}$ as a subset of the complex numbers. Compute the homology of X in all degrees.
4. (a) For any map $f: S^{2 n} \rightarrow S^{2 n}$, show that there exists a point $x \in S^{2 n}$ such that either $f(x)=x$ or $f(x)=-x$, and deduce that every map $\mathbf{R} \mathbf{P}^{2 n} \rightarrow \mathbf{R} \mathbf{P}^{2 n}$ has a fixed point.
(b) Is it true that every map $\mathbf{R P}^{2 n+1} \rightarrow \mathbf{R P}^{2 n+1}$ has a fixed point? If yes, prove it; if no, give a counterexample.
5. For each $n \geq 1$, construct a surjective map $S^{n} \rightarrow S^{n}$ with $\operatorname{deg}(f)=0$.
6. (a) Let T be a 2 -dimensional torus, which we regard as the quotient of a solid square by identifying opposite edges in the usual way. Let $q: T \rightarrow S^{2}$ be the map obtained by collapsing the boundary of the square (which is a copy of $S^{1} \vee S^{1}$ in T) to a point. Prove that q is not nullhomotopic (i.e. q is not homotopic to a constant map) by showing it induces an isomorphism on H_{2}.
(b) Does there exist a map $S^{2} \rightarrow T$ which induces an isomorphism on H_{2} ? If yes, construct an example; if no, prove none exists.
7. Let G be any finitely generated abelian group and let $n \geq 1$ be an integer. Construct a topological space X such that

$$
\widetilde{\mathrm{H}}_{i}(X)= \begin{cases}G & i=n \\ 0 & i \neq n\end{cases}
$$

Hint: First do the case where $G=\mathbf{Z} / m$ for an integer m.
Remark. In fact, for an arbitrary abelian group G it is possible to construct a space with the above property.

