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Optimal Power Control of Hybrid PEM Fuel Cell
Systems for an Accelerated System Warm-up
Eric A. Müller, Anna G. Stefanopoulou,Member, IEEE,and Lino Guzzella,Senior Member, IEEE

Abstract— Power management and thermal control are key
technical challenges in fuel cell power system applications. In
this paper, an optimal supervisory controller for the operation of
a hybrid polymer electrolyte membrane (PEM) fuel cell power
system equipped with an auxiliary coolant heater is presented.
This predictive feedback controller is designed to minimize the
transient warm-up phase after a cold start. It drives the system
to its operating temperature within minimal time while taking
into account certain energy and temperature constraints. To this
end, a control-oriented mathematical model of the system is
developed and partially validated with experimental data. The
proper operation of the controller is verified for various operating
conditions. Compared to a system without battery nor auxiliary
heater, the simulation shows a significantly reduced warm-up
time for the optimally controlled configuration proposed.

Index Terms— PEM fuel cell system, hybridization, system
warm-up, transient thermal dynamics, power management,
mathematical modeling, model-based control, time-optimal con-
trol, feedback control.

NOMENCLATURE

A,B,C,D Coefficients of the linearized Hamiltonian
AActive Active area (m2)
c Specific heat (J/(kg K))
E Thermodynamic potential (V)
f System dynamics function
H Hamiltonian
Ḣ Enthalpy flow rate (W)
h, h̃ Switching functions
I Electric current (A)
J Performance index (s)
j, k Indices
m Mass (kg)
ṁ Mass flow rate (kg/s)
nCells Number of fuel cells
P Power (W)
Q Battery capacity (C)
Q̇ Heat flow rate (W)
Ri Battery internal resistance (Ω)
s Slack variable
SOC Battery state of charge
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T Temperature (K)
t Time (s)
∆tc Computation time (s)
∆ts Sample time (s)
u Control vector
V Voltage (V)
Vol Volume (m3)
v External input vector
x State vector

Greek Symbols

α, β, γ Coefficients of the switching functions
η Efficiency
λ Costate vector
λAir Air excess ratio
ν Overvoltage (V)
Ω Set of admissible control vectors
ρ Mass density (kg/m3)
τ Time constant (s)

Subscripts and Superscripts

∗ Optimal
0 Initial
Act Activation
Amb Ambient
Aux Auxiliaries
av Average
Bat Battery
Cell Fuel cell
Cond Conduction
Conv Convection
CS Cooling system
Ct Coolant
des Desired value
Evap Evaporation
Exs Non-reacting part of the moist air flow
f Final
Fan Fan
HM Humidification section
HT Heater
HX Heat exchanger
IF Input filter
In Inlet
mAir Moist air
max Maximum
Mean Mean value
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min Minimum
mH2 Moist hydrogen
nom Nominal
oc Open circuit
Ohm Ohmic
Out Outlet
PC Power converter
PS Power section
Rad Radiation
Reac Reaction
St Stack
Sys Fuel cell system

I. I NTRODUCTION

FUEL cells are considered to be an alternative power
source for automotive propulsion, electricity generation,

and back-up power supplies. Their high specific power, low
operating temperature characteristics, and ability to respond to
rapid load changes make the polymer electrolyte membrane
(PEM) fuel cells preferable for applications characterized by
highly dynamic operating conditions. A particularly critical
task, even for low-temperature fuel cell systems, is to over-
come the transient power limitations during warm-up. The
time needed to warm up the fuel cell system is of prominent
importance. For example, customers of fuel cell vehicles will
expect to start the vehicle and drive away almost immediately.
A popular solution to this problem is the system hybridization.
The basic idea of a hybrid setup is to combine the primary
energy conversion device with an energy storage system, as for
instance an electrochemical battery. In the case of cold start,
the energy storage system can thus be used to guarantee the
power output demanded throughout this phase and, preferably
in combination with an auxiliary heating device, to accelerate
the system warm-up.

A question emerging with the hybridization is the appropri-
ate power management of the system’s main components un-
der transient temperature conditions. Many publications have
discussed the importance of a well-designed power control,
for example, see [1]–[3]. But the developed solutions exclude
the warm-up issues and thus are designed for stationary
temperature conditions only. The objective of the present study
is to find an optimal power control strategy for the fuel cell
stack and an auxiliary coolant heater during the temperature-
transient phase after a cold start. As the system should attain its
operating temperature as fast as possible, the elapsed system
warm-up time is defined to be the measure of optimality.
Preferably, the time-optimal control strategy developed should
be implementable as a feedback controller to allow a real-time
optimization of the power management.

In order to systematically develop a controller for the
power management during the system warm-up, a control-
oriented mathematical model of the system’s transient behavior
is required. Recently, several approaches of various levels
of complexity have been proposed to predict the thermal
characteristics of a fuel cell stack, for example, see [4]–[8]. In
the present study a modified and extended version of the fuel
cell stack model developed in [8] is employed. This model
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Fig. 1. Schematic of the input and output signals of the hybridfuel cell
power system model with power generation subsystem (left block) and power
conversion and storage subsystem (right block).

has to be extended with the other relevant components of the
system, specifically, the coolant loop, the battery, the auxiliary
heater, and a power converter.

In the first part of this paper the mathematical model of the
hybrid fuel cell power system is described. The model is based
on physical first principles and considers the relevant energy
and mass flows. Sub-freezing conditions are not captured.
The model assumes high-level supervisory power control
and low-level control for each component. Where necessary,
parameters of the model are identified experimentally, and the
thermal part is validated against measurement data. At the
end of the modeling section, a model with reduced order and
complexity is proposed. This simpler model serves as a basis
for the subsequent controller development. The derivationof
the optimal warm-up controller is the focus of the second part.
Therein, an optimal control problem is stated first. Applying
Pontryagin’s Minimum Principle, then, results in a set of
necessary conditions for the optimality of a solution. On
the basis of these conditions, a feedback control law for
the optimal power management is derived. Implementation
aspects for the real-time usage of the controller are also
addressed. Moreover, the power controller is augmented with
a coolant mass flow controller. In the third part of the paper
a direct feedforward optimization environment is introduced.
The direct feedforward optimization serves as a performance
benchmark for the controller and it is also used to inves-
tigate the effects on the warm-up time of various system
configurations (e. g. without auxiliary heater). In the lastpart,
an optimally controlled system warm-up is analyzed in the
simulation and the functionality of the controller developed is
verified.

II. M ODEL OF THEHYBRID FUEL CELL POWER SYSTEM

The model of the hybrid fuel cell power system consists of
a power generation subsystem (power section, humidifier, and
coolant loop) and a power conversion and storage subsystem
(power converter and battery). A causality diagram of the
model is shown in Fig. 1. The controllable inputs are the
desired stack current,Ides

St , the desired air excess ratio,λdes
Air ,
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Fig. 2. Schematic of the fuel cell stack with integrated humidification section
and of the coolant circuit layout. (PS: power section, HM: humidifier, R:
reservoir, CP: coolant pump, HT: heater, HX: heat exchanger)

the coolant mass flow rate1, ṁCt , and the actuator signals of
the heater and the fan,uHT anduFan . The demanded system
output power,POut , the ambient temperature,TAmb , the air
inlet temperature,THM In

mAir , and the hydrogen inlet temperature,
TPS In

mH2
, are uncontrollable but measurable input signals. The

output signals of the system are the state of charge of the
battery, SOC, the battery current,IBat , the stack current
and voltage,ISt and VSt , the components’ temperatures,
TPS , THM , andTCS , and the coolant temperatures,TPS Out

Ct ,
THM Out
Ct , andTCS Out

Ct . The main component of the system is
the fuel cell unit. In this project a 1.25 kW, 24-cell PEM fuel
cell stack with an integrated membrane-type humidification
section is considered. Detailed specifications of the fuel cell
unit can be found in [8].

A. Modeling of the Power Generation Subsystem

A schematic overview of the power generation subsystem
is depicted in Fig. 2. The power generation subsystem can be
divided into two parts: the thermal part and the electric part.

1) Thermal Dynamics:The thermal dynamics module of
the model predicts the temperatures of the main system
components (fuel cell stack, humidifier, and cooling system)
and the relevant coolant inlet and outlet temperatures. In order
to capture the temperature dynamics of the system’s main
components, the first law of thermodynamics is applied to
three separate control volumes, one for each component. For
the power section, the energy balance yields the following

1On the test station the coolant flow rate is controlled through a manual
valve. Therefore, instead of a coolant pump control signal, the coolant flow
rateṁCt is used as input signal.

differential equation:

mPS cPS

dTPS

dt
= ḢReac − Ḣ

Evap PS
H2O + ∆ḢPS

mAir Exs

+ ∆ḢPS
Ct − Q̇PS2HM

Cond − Q̇PS2Amb
Conv

− Q̇PS2Amb
Rad − PSt . (1)

This equation states that the rate of change of energy inside
the control volume is equal to the reaction enthalpy rate (for
liquid product water), minus the evaporation enthalpy flow rate
of water inside the power section, plus the enthalpy flow rate
difference of the moist excess air, plus the enthalpy flow rate
difference of the coolant, minus the energy rate conducted
to the adjacent humidification section, minus the rate of
convective and radiative heat transfer to the environment,
minus the electric power. Kinetic and potential energies of
the mass streams are neglected, as they are small compared to
the other contributions. Mass storage effects and the purging
and leakage of hydrogen are not considered either. A detailed
discussion of the relevant contributions to the power section
energy balance can be found in [8]. For the calculation of
the heat transfer to the coolant,∆ḢPS

Ct , and of the coolant
temperatureTPS Out

Ct , a quasi-static, internal-flow, convective
heat transfer with constant surface temperature is assumed.
The air excess ratio is assumed to be perfectly controlled,
hence, to follow exactly the desired value,

λAir = λdes
Air . (2)

Similarly to the energy balance (1), the energy balance for
the humidification section yields

mHM cHM

dTHM

dt
= ∆ḢHM

Ct − Ḣ
Evap HM
H2O + ∆ḢHM

mAir

+ Q̇PS2HM
Cond − Q̇HM2Amb

Conv

− Q̇HM2Amb
Rad . (3)

As shown in Fig. 2, the coolant circuit consists of a
reservoir, the coolant pump, an electrical heater as heat source,
and a heat exchanger with a fan to remove heat. In favor of
a low-order model, the coolant system was lumped into one
thermal mass of uniform temperature. The differential equation
defining the cooling system temperature dynamics is given
below.

mCS cCS

dTCS

dt
= ṁCt cCt

(

THM Out
Ct − TCS

)

+ Q̇HT − Q̇HX (4)

The first term considers the enthalpy flows of the coolant
entering and exiting the coolant loop,̇QHT is the thermal
power supplied to the system by heating, andQ̇HX represents
the heat emitted at the heat exchanger. As the reservoir is not
included explicitly in the model, the coolant refill has to be
treated as a temperature disturbance. Due to the pipe volume
a time lag has to be considered for the coolant temperature at
the cooling system outlet (power section inlet). This time lag
was approximated by a first-order delay,

τCS

dTCS Out
Ct

dt
= TCS − TCS Out

Ct (5)
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with a time constant of

τCS =
ρCt VolCS

ṁCt

. (6)

2) Stack Voltage and Auxiliary Power:In order to predict
the voltage output of the fuel cells, a quasi-static electrochemi-
cal model was implemented. This static voltage model predicts
the cell voltage as a function of the relevant influencing vari-
ables. It considers the thermodynamic equilibrium potential,
E, the activation overvoltage,νAct, and the ohmic overvoltage,
νOhm,

VCell = E − νAct − νOhm . (7)

Mass concentration effects were not considered. The over-
voltages were expressed as a combination of physical and
empirical relationships. The stack voltage was then defined
as the sum of the individual cell voltages, all of which were
assumed to be equal.

VSt = nCells VCell (8)

For the operation of a fuel cell system, auxiliary power is
needed. The main power consumers of the fuel cell system
investigated are the coolant pump, the air compressor, and
the electrical heater. Since the power consumption of the first
two is two to three orders of magnitude smaller than that
of the electrical heater, it was neglected2. According to the
correlations for the calculation of auxiliary component power
given in [9], the power input of the coolant pump is estimated
to stay below 20 W, and the power input of the air compressor
is valued to be below 15 W. The electric power of the heat
tape is assumed to be linearly dependent on the control signal
uHT ,

PAux = uHT

Q̇nom
HT

ηHT

. (9)

The valueQ̇nom
HT denotes the nominal thermal power of the

heater andηHT the heater efficiency, which are both assumed
to be constant.

B. Modeling of the Power Conversion and Storage Subsystem

The existing power generation module was notionally aug-
mented with a power conversion module (DC/DC power con-
verter) and a power storage module (electrochemical battery)
to form a hybrid power system. A schematic of the proposed
electric layout is shown in Fig. 3. The battery and the electric
load are connected in parallel to the main bus of the power
converter.

1) Power Converter:The power converter module serves to
determine the additionally required power from the batteryor
the surplus power, respectively, to provide the desired output
power.

PBat = POut + PAux − ηPC ISt VSt (10)

The model also allows for negative values ofPOut . Negative
power demands may, for example, occur when considering re-
generative braking in a hybrid vehicle application. A perfectly,

2Consider that the system investigated is a low-pressure system. The
inclusion of a current-dependent air-compressor load is recommended when
dealing with higher-pressure systems.

Fuel cell stack

Load

Power
converter

Battery

Fig. 3. Schematic of the electric system layout (hybrid system configuration)
with the PEM fuel cell stack as energy source, a DC/DC power converter,
and a battery as energy storage system.

low-level controlled system was assumed, implying that the
actual stack current equals the desired stack current,

ISt = Ides
St . (11)

In order to take into account the losses, a constant efficiency
ηPC for the power conversion was presumed.

2) Battery: In the battery module the amount of energy
buffered is calculated. The level variable of the stored energy
is the state of charge of the battery,SOC.

QBat

dSOC

dt
= −IBat (12)

The capacity of the battery is denoted byQBat , and IBat is
the battery current. As the battery voltage is a function of the
battery current,

VBat = Voc(SOC) − Ri(SOC, IBat) IBat (13)

the battery current can only be inferred recursively from the
battery power,

IBat =
PBat

VBat(IBat)
. (14)

The valueVoc(SOC) denotes the open circuit voltage of the
battery, while Ri(SOC, IBat) represents the internal resis-
tance. The effect of any charge losses (coulomb efficiency)
and the influence of temperature on the battery performance
were not taken into consideration for this model.

C. Parametrization and Validation

As the model established is a control-oriented lumped-
parameter model, and as the formulation of the model is
mainly based on physical first principles, the model is rela-
tively easy to parametrize. Where necessary and feasible, pa-
rameter values were identified with measurement data recorded
on the test bench. Many parameters are geometrical parameters
and can thus be determined in a straightforward fashion. Other
parameters (e. g. heat transfer coefficients) were calculated
based on known convection correlations, and a few parameter
values were estimated. The parameters and characteristicsof
the battery were taken from a public database [10]. The
battery was assumed to be a stack of ten modules, each of
which consisting of six nickel metal hydride (NiMH) cells.
Characteristic parameters of the model are summarized in
Table I.

The power generation module was extensively validated
against experimental data. In order to be able to estimate the
dynamic quality of the model, the important input signals were
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TABLE I

MAIN PARAMETERS OF THEHYBRID FUEL CELL POWER SYSTEM MODEL

Parameter Symbol Value

Rated fuel cell stack output power Pnom
St 1.25 kW

Number of fuel cells nCells 24

Cell active area AActive 296 cm2

Nominal battery voltage V nom
Bat 72 V

Battery capacity (@ 6.5 A) QBat 6 Ah

Power converter efficiency ηPC 0.95

Nominal thermal power of the HT Q̇nom
HT 600 W

Efficiency of the HT ηHT 0.8

Thermal capacity of the PS mPS cPS 12 460 J/K

Thermal capacity of the HM mHM cHM 5 460 J/K

Thermal capacity of the CS mCS cCS 12 000 J/K

Volume of the CS VolCS 0.75 L

varied during the experiments. Figure 4(a) shows the desired
stack current, the coolant mass flow rate, and the heater and
fan control signals. The desired air excess ratio was set to a
constant value (λdes

Air = 2). The predicted coolant temperatures
at the cooling system outlet (power section inlet) and at
the humidifier outlet, and the predicted stack voltage were
compared with the corresponding measurement data to rate
the quality of the model. As shown in Fig. 4(b), the prediction
accuracy is excellent for the temperatures and adequate forthe
stack voltage. The good agreement between the experimental
data and the simulation, even during heavy transients, reveals
that the model derived captures the main static and dynamic
properties of the system as expected.

D. Reduced-Order Model

The detailed, fifth-order model derived above was used
to verify the functionality of the controller. However, it is
too complex to be used for the development of an optimal
controller. Therefore, a model of reduced complexity was es-
tablished. This reduced-order model results from the following
simplifications:

• Combination of the temperature variablesTPS , THM ,
TCS , and TCS Out

Ct into one lumped state variable de-
scribing a mean system temperature.

• Modeling of the enthalpy rate of reaction independent of
reactant and product temperatures.

• Neglect of the enthalpy flow difference of the excess air.
• Usage of average (constant) values for the battery open-

circuit voltage and the battery internal resistance.
These simplifications yield a nonlinear, second order system
of ordinary differential equations,

dTSys

dt
= f1(TSys , I

des
St , uHT , uFan , λdes

Air , TAmb) (15)

dSOC

dt
= f2(TSys , I

des
St , uHT , uFan , POut) (16)

with state variablesTSys (mean system temperature) andSOC
(state of charge of the battery). The variablesIdes

St , λdes
Air ,

uHT , anduFan are controllable input signals, whereasPOut

andTAmb denote the uncontrollable external variables of the
simplified system model.
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Fig. 4. Validation of the model: (a) input signals (the remaining inputs
were assumed to be constant,λdes

Air ≡ 2, TAmb ≡ 25◦C, THM In
mAir ≡ 20◦C,

TPS In
mH2

≡ 40◦C), (b) comparison between experiment and prediction of the
coolant temperatures at the cooling system outlet and at the humidifier outlet,
and of the stack voltage.

The dynamics of the mean system temperature,TSys , are
calculated as

mSys cSys

dTSys

dt
= ḢReac − Ḣ

Evap
H2O

− Q̇
Sys2Amb
Conv − Q̇

Sys2Amb
Rad

+ Q̇HT − Q̇HX − PSt . (17)

A slack variable,s, was introduced for the adjustment of the
thermal capacity of the system,

mSys cSys = s ·
∑

k∈{PS,HM,CS}
mk ck . (18)

The state of charge of the battery is still determined through
(12) as a function of the battery current. But, by virtue of the
constant open-circuit voltage and constant internal resistance
assumption, (14) can be solved for the battery current,

IBat =
V av
oc −

√

(V av
oc )2 − 4Rav

i PBat

2Rav
i

. (19)
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Fig. 5. Verification of the simplified system model: (a) input signals
(the remaining inputs were set to be constant,POut ≡ 500 W, λdes

Air ≡ 2,
TAmb ≡ 25◦C, THM In

mAir ≡ 20◦C, TPS In
mH2

≡ 40◦C, (b) comparison between
the detailed model and the reduced-order model.

1) Verification: In Fig. 5(b) the simplified model is com-
pared with the detailed model for a set of arbitrarily chosen
input signals. A weighted mean temperature

TMean =

∑

k∈{PS,HM,CS} mk ck T k Out
Ct

∑

k∈{PS,HM,CS} mk ck
(20)

was defined as a reference signal for the temperatureTSys . The
slack variable was set tos = 1.15. Apparently, the reduced-
order model can be applied to predict accurately the mean
temperature of the system and the state of charge of the battery,
as the results of Fig. 5(b) demonstrate. This validates the
simplifications introduced. Additionally, the results prove the
fact that the coolant mass flow rate has no influence on the
mean temperature (but only on the spreading of the component
temperatures).

III. D EVELOPMENT OF THEOPTIMAL SUPERVISORY

CONTROLLER

A feedback controller was developed based on the simplified
model equations (15) and (16) for the optimal supervisory con-
trol during the transient warm-up phase. The warm-up phase of
the hybrid fuel cell system is defined as the time period before
the mean system temperature reaches a predefined operating

temperature valueT f .

Warm-up completed⇔ TSys(tf ) = T f (21)

The controller operates the system to heat up within minimal
time while taking into account energy and temperature con-
straints. The energy constraint enables the charge-sustaining
operation and predefines the value of the battery’s terminal
state of charge,SOCf . The temperature constraint ensures that
the spacial temperature gradient of the system is bounded.

The controller is divided into two sub-controllers: an opti-
mal warm-up power controller and a warm-up cooling system
controller. For the optimal warm-up power controller two
control variables are considered, namely, the desired stack
current, Ides

St , and the heater control signal,uHT . As the
current density of the fuel cells is limited, the allowed stack
current is bounded in magnitude,

Ides
St ≤ Imax

St . (22)

It is possible to consider a temperature dependency in the
current density restriction to take into account the variability
of the membrane performance. The output power,POut , the
ambient temperature,TAmb , and the desired air excess ratio,
λdes
Air , were treated as external variables, since they are not

controllable or are assumed to be controlled on a different
level of the control hierarchy. The coolant mass flow rate,ṁCt ,
which was shown to have no influence on the systems’s mean
temperature, is regulated by the cooling system controller. For
obvious reasons, the heat exchanger fan is assumed to be off
during the entire warm-up period,

uFan ≡ 0. (23)

A. Statement of the Optimal Warm-up Control Problem

The problem of minimizing the system warm-up time con-
stitutes a minimum-time optimal control problem. In order to
simplify the notation during the subsequent optimization part,
the following substitutions are introduced:

x = [x1, x2]
T = [TSys ,SOC]T (24)

u = [u1, u2]
T = [

Ides
St

Imax
St

, uHT ]T (25)

v = [v1, v2, v3]
T = [POut , TAmb , λ

des
Air ]

T . (26)

The optimal control problem is stated as follows:
Let x0 be a given initial state of the system. Find an optimal
control vectoru∗ : [t0, tf ] → Ω ⊆ R

2, such that the following
conditions are met:

x∗(t0) = x0 (27)

ẋ∗(t) = f(x∗(t), u∗(t), v), for all t ∈ [t0, tf ] (28)

x∗(tf ) = xf (29)

and the performance index

J(u) =

∫ tf

t0

1 dt = tf − t0, tf free (30)

is minimized.
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The condition (29) constrains the components of the state
vector at terminal time to have the prescribed values,

xf = [T f ,SOCf ]. (31)

The components of the control vector are constrained in
magnitude by the relation

u1(t), u2(t) ∈ [0, 1]. (32)

The uncontrollable input signalsv appear as disturbances. As
they are generally not known in advance, they are assumed to
be constant for the formulation of the optimal control problem.

This idea will become clearer later on. The Hamiltonian
H : R

2 × Ω × R
2 → R associated with this (time-invariant)

optimal control problem is given by

H(x(t), u(t), λ(t)) = 1 + λT(t) f(x(t), u(t), v) (33)

whereλ(t) denotes the costate vector.

B. Necessary Conditions for the Optimality of a Solution

If u∗ : [t0, t
∗
f ] → Ω is an optimal control vector, the follow-

ing necessary conditions hold [11]:

ẋ∗(t) = ∇λH(x∗(t), u∗(t), λ∗(t)) (34)

x∗(t0) = x0 (35)

x∗(t∗f ) = xf (36)

λ̇∗(t) = −∇xH(x∗(t), u∗(t), λ∗(t)) (37)

H(x∗(t), u∗(t), λ∗(t)) ≡ 0 (38)

H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u, λ∗(t)),

for all u ∈ Ω, t ∈ [t0, t
∗
f ]. (39)

Below, the explicit statement of the time dependency as well
as the indication ofv are omitted for the sake of brevity.

C. Derivation of the Optimal Feedback Control Law

For the solution of the optimal control problem stated above
it is assumed that the optimal control problem is normal3.
Hence, the derivation of the feedback control law consists of
two consecutive steps. First, theH-minimal control is derived
from (39). This preliminary control law relates the control
signalu to the statex and to the costateλ. In a second step,
two equations are deduced from the necessary conditions (34)–
(38) to eliminate the costateλ.

1) H-minimal Control: In order to avoid the need for any
second-order conditions for the derivation of theH-minimal
control, the Hamiltonian is linearized in the control vector,
yielding

H(x, u, λ) ≈ 1 + λ1 A(x1) + λ2 C(x1)

+ [λ1 B1(x1) + λ2 D1(x1)]u1

+ [λ1 B2 + λ2 D2]u2. (40)

Physically interpreted, this step corresponds to linear ap-
proximations of the equation for the battery current,
IBat = IBat(PBat), and of the equation for the stack power,

3The optimal solution contains no singular arc.

PSt = PSt(ISt). At this point, usually, substitutions for the co-
efficients of the control components are introduced (switching
functions).

h1(x1, λ1, λ2) = λ1 B1(x1) + λ2 D1(x1) (41)

h2(λ1, λ2) = λ1 B2 + λ2 D2 (42)

The H-minimal control thus can be expressed as

u∗
j =











1 if h∗
j < 0

0 if h∗
j > 0

indeterminate ifh∗
j = 0

, for j = 1, 2. (43)

In a normal optimal control problem, by definition, the
functions h∗

j can be zero only at isolated instants of time.
Hence, the time-optimal controls consist of piecewise constant
functions (of value 0 or 1) with simple jumps.

2) Elimination of the Costate Vector:Under the restriction

ẋ∗
1 ≈ A(x∗

1) + B1(x
∗
1)u∗

1 + B2 u∗
2 6= 0 (44)

the necessary condition (38) can be transformed into an
equation for the costateλ∗

1,

λ∗
1 = −

1 + λ∗
2 [C(x∗

1) + D1(x
∗
1)u∗

1 + D2 u∗
2]

A(x∗
1) + B1(x∗

1)u∗
1 + B2 u∗

2

. (45)

After the multiplication with the denominator of (45) the
substitution of (45) into the switching functions (41) and (42)
yields the modified switching functions̃h1 and h̃2,

h̃1(x1, λ2, u2) = λ2 D1(x1)A(x1)

− λ2 B1(x1)C(x1) − B1(x1)

+ λ2 [D1(x1)B2 − B1(x1)D2]u2 (46)

= α(x1, λ2) + γ(x1, λ2)u2 (47)

h̃2(x1, λ2, u1) = λ2 D2 A(x1) − λ2 B2 C(x1) − B2

− λ2 [D1(x1)B2 − B1(x1)D2]u1 (48)

= β(x1, λ2) − γ(x1, λ2)u1. (49)

In order to prevent sign changes in the conditions of the
H-minimizing control (43), the following restriction is re-
quired:

ẋ∗
1 ≈ A(x∗

1) + B1(x
∗
1)u∗

1 + B2 u∗
2 > 0. (50)

Due to the fact that the signs of the linear parts of the
affine switching functions (47) and (49) are different, the im-
plicit relations u∗

1 = u1(x
∗
1, λ

∗
2, u

∗
2) and u∗

2 = u2(x
∗
1, λ

∗
2, u

∗
1)

following from (43), (47), and (49) can uniquely be solved to
determineu∗

1 andu∗
2, as can be shown.

u∗
1 = u1(x

∗
1, λ

∗
2) (51)

u∗
2 = u2(x

∗
1, λ

∗
2) (52)

From the necessary condition (37) it is deduced that the costate
λ2 has to be constant on an optimal trajectory, asx2 does not
emerge in the Hamiltonian (33),

λ̇∗
2 = 0 ⇒ λ∗

2 = constant. (53)
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By integrating the system dynamics (34) and considering the
boundary constraints (35) and (36), the following necessary
conditions for the optimal trajectory are obtained:

∫ tf

t0

f1(x
∗
1, u

∗
1, u

∗
2) dt = x

f
1 − x0

1 (54)

∫ tf

t0

f2(x
∗
1, u

∗
1, u

∗
2) dt = x

f
2 − x0

2. (55)

These conditions can be transformed to
∫ x

f
1

x0
1

f2(x1, u1(x1, λ
∗
2), u2(x1, λ

∗
2))

f1(x1, u1(x1, λ
∗
2), u2(x1, λ

∗
2))

dx1 + x0
2 − x

f
2 = 0 (56)

by substituting

dt =
dx1

f1(x1, u1, u2)
(57)

into (55), adapting the integration limits, and replacingu∗
1 and

u∗
2 with the control laws (51) and (52). The integral equation

(56) defines implicitly the optimal (constant) value of the
second costate componentλ∗

2,

λ∗
2 = λ2(x

0
1, x

0
2, x

f
1, x

f
2). (58)

The substitution (57) holds forf1 6= 0. Substituting (58) into
(51) and (52) eventually yields the desired feedback control
law,

u∗
1 = u1(x1, x

0
1, x

0
2, x

f
1, x

f
2) (59)

u∗
2 = u2(x1, x

0
1, x

0
2, x

f
1, x

f
2). (60)

D. Remarks Concerning the Existence of Optimal and Ex-
tremal Controls

In general, the questions about the existence of opti-
mal controls from any initial state to any target set are
extremely difficult to answer and the proper treatment of
singular solutions is very complex. Therefore, motivated
from an engineering point of view, the optimal control law
derived was extended with a heuristic control law. The
heuristic control law comes into operation if no zeroλ∗

2

of the integral equation (56) is found under the restric-
tion f1(x1, u1(x1, λ

∗
2), u2(x1, λ

∗
2)) > 0, ∀ x1 ∈ [x0

1, x
f
1]. The

question about the existence of only locally optimal solutions
is transferred to the question about the number of zeros of the
integral equation (56). The optimal control law can potentially
yield a locally optimal solution.

E. Optimal Warm-up Power Controller Implementation

While the previous section shows the procedure to derive
the optimal control signals, this sections details how the
equations derived are implemented in a feedback controller
which optimizes the operation of the system on-line. The
controller is assumed to work with a sample time of∆ts
and to require a computation time of∆tc. The predefined
terminal temperature,T f , the predefined state of charge of the
battery,SOCf , and a filter time constant,τIF , are the only free
parameters of the controller. The controller works according
to the iteration scheme outlined below.

1) Determine the low-pass-filtered signal of the power
demand at timetj , wheretj−1 = tj − ∆ts,

P IF
Out(tj) = e

−∆ts

τIF P IF
Out(tj−1)

+
(

1 − e
−∆ts

τIF

)

POut(tj) (61)

and assign the input signals,

x0
1 = TMean(tj) (feedback signal)

x0
2 = SOC(tj) (feedback signal)

v1 = P IF
Out(tj) (low-pass-filtered external signal)

v2 = TAmb(tj) (external signal)

v3 = λdes
Air (tj). (external signal)

2) Calculate (iteratively) a constantλ2,

λ2 = λ2(x
0
1, x

0
2, x

f
1, x

f
2, v1, v2, v3)

subject to

f1(x1, u1(x1, λ2), u2(x1, λ2)) > 0, ∀ x1 ∈ [x0
1, x

f
1]

with

x
f
1 = T f (desired terminal temperature)

x
f
2 = SOCf . (desired terminal state of charge)

3) If an admissible value forλ2 is found, calculate the
optimal control signals,

u1 = u1(x
0
1, λ2, v1, v2, v3)

u2 = u2(x
0
1, λ2, v1, v2, v3).

Else (if no admissible value forλ2 is found), determine
heuristically motivated control signals,

[u1, u2]
T =

{

[0, 0]T if x0
2 ≥ x

f
2

[1, 0]T if x0
2 < x

f
2

.

4) Assign the output signals,

Ides
St (t) = u1 · I

max
St (stack control signal)

uHT (t) = u2 (heater control signal)

for tj + ∆tc ≤ t < tj+1 + ∆tc, andtj+1 = tj + ∆ts.
In the following, the different steps of the control algorithm
are elaborated.

1) Input Signals: The controller features two feedback
signals: the mean system temperature,TMean , and the esti-
mated state of charge of the battery,SOC. The mean system
temperature can be obtained from measurements of the coolant
temperatures, according to (20), whereas the state of charge
has to be inferred through estimation. The details on the
process of estimating the state of charge of a battery are
outside the scope of this article and, therefore, not considered
here. For reference, see for example [12].

The optimal feedback control law (model predictive control)
determines the control signals under the assumption that the
external variables (26) are constant, whereas in practice,these
signals vary with time. Therefore, aside from the state feed-
back signals, a controller suitable for practical implementation
has to possess the additional input signalsPOut , TAmb , and
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λdes
Air . Repeatedly applying the control scheme with varying

external signals thus means to repeatedly optimize the system,
assuming the future external conditions to be constant for
the rest of the warm-up. Unlike the ambient temperature,
TAmb , and the air excess ratio,λdes

Air , which do not vary much
in general, the demanded output power,POut , can fluctuate
rapidly. In order to improve the prediction, therefore, thepower
signal is low-pass filtered at the input of the controller. Hence,
the estimation of the averaged load conditions ahead is inferred
from the past power demand. The time constant of the filter,
τIF , is a free parameter of the controller.

2) Iterative Calculation ofλ2: As the conditional equation
(56) for the costate componentλ2 is an integral equation, the
zero finding is performed iteratively. The iteration terminates
if a given function tolerance is met and aborts if a maximum
number of iterations is reached or if the constraint forf1 is
violated. If the algorithm fails in finding a zero, the controller
switches to the heuristic control law. The optimal value of the
costate componentλ2 would be constant for an entire warm-up
if the real system behaved exactly like the model. In practice,
obviously, this value has to be adapted while the warm-up
proceeds. As an initial guess, the value of the previous iteration
is taken.

3) Calculation of the Control Signals:The optimal con-
trol signals are defined by the switching function coef-
ficients α = α(x0

1, λ2, v1, v2, v3), β = β(x0
1, λ2, v1, v2), and

γ = γ(x0
1, λ2, v1, v3). Alternatively, if no value for λ2 is

available, the controls are defined by heuristic rules. The
heuristic extension of the control law runs the fuel cells with
maximum power and switches the heater off if the current
state of charge of the battery is below the desired terminal
state of charge. If the current state of charge is above the
desired terminal state of charge, both the fuel cell stack and
the electrical heater are turned off.

4) Output Signals:The optimal control signals are com-
puted every time step for the new initial conditionsx0 and
external variablesv, and are applied during the time interval
from tj + ∆tc to tj+1 + ∆tc.

F. Coolant Flow Controller

The function of the coolant flow controller is to maintain
a uniform temperature distribution within the fuel cell stack
to guarantee high conversion efficiency of the fuel cells on
the one hand, and to avoid damage to the stack through
mechanical stress or hot spots, on the other hand. Thus, the
coolant flow control maintains a minimum flow rate for low
power conditions,

ṁCt ≥ ṁmin
Ct (62)

and ensures that a maximum temperature difference over the
power section is not exceeded during high power demands,

TPS Out
Ct − TPS In

Ct ≤ ∆Tmax
PS . (63)

The temperature difference of the coolant over the power
section,∆TPS , is the input signal and the coolant mass flow
rate,ṁCt , is the output signals of the controller. The coolant
flow controller was realized as a PI controller with an anti-
reset windup addition.

Ides
St

λdes
Air

ṁCt

uHT

uFan

(≡ 0)

POut TAmb THM In
mAir

TPS In
mH2

SOC

TMean

∆TPS

Hybrid
fuel cell
power
system

Optimal
warm-up

power
controller

Warm-up
cooling
system

controller

Fig. 6. Schematic of the control system structure for an optimally controlled
system warm-up with the optimal warm-up power controller and the warm-up
cooling system controller.

G. Control System Structure

A schematic of the control system structure for an optimally
controlled system warm-up is depicted in Fig. 6. The control
system features two controllers: the optimal warm-up power
controller and the warm-up cooling system controller. The
optimal warm-up power controller computes the optimal stack
current and the optimal heater control signal during the warm-
up period (TMean ≤ T f ). The cooling system is controlled
separately. During the warm-up, the fan is off, and the coolant
flow controller ensures that the coolant does not exceed a
maximum temperature difference over the fuel cell stack. Upon
completion of the warm-up, the fan has to be operated to
maintain the desired system temperature.

IV. D IRECT FEEDFORWARDOPTIMIZATION

Besides the development of a feedback controller, the
optimal control problem considered was also solved by a
direct trajectory optimization method in a feedforward manner.
Therefore, the problem of minimizing the warm-up time was
implemented in GESOP4, a software system for numerical
trajectory optimization of dynamic systems [13]. In order to
discretize the optimal control problem and to transcribe itinto
a parametrized, finite-dimensional optimization problem,the
multiple shooting method PROMIS5 was used. The standard
nonlinear program (NLP) solver SLLSQP6 was then applied
to solve the resulting algebraic optimization problems for
various operating conditions and parameter values. The control
signals were approximated by piecewise linear functions. For
the problem at hand, the number of corresponding subintervals
was set to 12, resulting in 11 internal nodes whose positionsin
turn are subject to optimization. Additional control refinement
points were defined where necessary.

The direct optimization method was applied for two pur-
poses. It was first used to quantify the influence on the warm-
up time of the hybridization and the extension of the fuel

4GraphicalEnvironment forSimulation andOptimization
5Parametrized TrajectoryOptimization by DirectMultiple Shooting
6SequentialL inearLeastSquaresQuadraticProgramming
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TABLE II

DEFINITION OF CONTROLLER PARAMETERS AND NOMINAL OPERATING

CONDITIONS

Parameter / signal Symbol Value

Terminal temperature T f 50◦C

Terminal state of charge SOCf 0.7

Input filter time constant τIF 60 s

Power controller sample time ∆ts 3 s

Power controller computation time ∆tc 0.05 s

Minimum coolant flow rate ṁmin
Ct 10 g/s

Maximum temperature gap over the PS∆Tmax
PS 10◦C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starting temperatures (PS, HM, CS) T•(0) 25◦C

Initial state of charge SOC(0) 0.7

Power demand POut 500 W

Ambient temperature TAmb 25◦C

Desired air excess ratio λdes
Air 2

Air inlet temperature THM In
mAir 20◦C

Hydrogen inlet temperature TPS In
mH2

40◦C

TABLE III

OPTIMAL SYSTEM PERFORMANCE FORVARIOUS SYSTEM

CONFIGURATIONSUNDER NOMINAL OPERATING CONDITIONS

Battery Heater Ides
St (t) uHT (t) J∗ (s) δJ∗† (%)

No No f(POut ) - 3 487.0 0

Yes No optimized - 971.4 -72

No Yes f(POut , uHT ) optimized 408.1 -88

Yes Yes optimized optimized 311.8 -91
† Relative performance difference with respect to the configuration without

battery nor heater:δJ∗ = (J∗ − J∗|No Bat, No HT)/J∗|No Bat, No HT.

cell system with an auxiliary heater. Second, the feedforward
optimized solutions were used as performance benchmarks for
the feedback-controlled system.

V. RESULTS AND DISCUSSION

As a basis for the evaluation which is the subject of the
subsequent sections, nominal operating conditions were de-
fined and parameter values for the controllers were proposed.
These figures are given in Table II.

A. Investigation of Alternative System Configurations

In addition to the system configuration introduced in the
modeling section, three alternative system configurationsare
proposed: a system without battery nor heater, a hybrid system
without heater, and a system without energy storage unit but
with an auxiliary heater. In Table III these configurations are
compared with respect to their optimal performance values,
J∗, i. e. their minimal warm-up times. The operating condi-
tions were chosen according to the definitions of Table II.
For simplification, the cooling system controller was disabled
and the coolant mass flow signal was set to a constant
(ṁCt = 35 g/s). For configurations without an energy storage
unit, the stack current,Ides

St , follows directly from the total
power demand, as the number of degrees of freedom is
diminished by one.

TABLE IV

BENCHMARK RESULTS FOR THECONTROLLER UNDER VARIOUS

OPERATING CONDITIONS

Operating conditions J∗† (s) δJ‡ (%)

Nominal (Table II) 311.8 0.3

Nominal (Table II) butPOut = 250 W 370.0 1.4

Nominal (Table II) butPOut = 750 W 270.5 0.7

Nominal (Table II) butPOut = 1200 W 251.0 2.4

Nominal (Table II) butλdes
Air = 3 335.8 0.1

Nominal (Table II) butTAmb = T•(0) = 15◦C 432.7 0.0

Nominal (Table II) butSOC(0) = 0.65 260.6 0.4

Nominal (Table II) butSOC(0) = 0.8 415.0 1.7
† Minimum warm-up time from the direct feedforward optimization.
‡ Relative performance loss of the controller:

δJ = (J |Controlled − J∗)/J∗.

The configuration with no battery nor heater serves as a
basis for the comparison. For nominal operating conditions
it takes this system almost one hour (3 487 s) to reach the
operating temperature of 50◦C. The hybridization can reduce
the elapsed warm-up time by 72% to 971 s, provided that
optimal power management is applied. Another 68% reduction
to 312 s can be gained by adding an (optimally controlled)
auxiliary heater. Hence, the combination of hybridizationand
auxiliary heating yields a warm-up time of below one tenth
(9%) of the reference value. A system configuration with
auxiliary heater but without battery has a warm-up period
reduced by 88% compared to the reference configuration.

The improvement achieved with the hybridization is ex-
plained by the additional degree of freedom. As a direct
consequence of the possibility to store energy, the fuel cell
stack can be operated over a shorter period of time with
higher (maximum) power. This, in turn, results in reduced heat
losses to the environment. Similarly, the auxiliary heateradds a
degree of freedom to the system, too, but acts on the warm-up
twofold. Primarily, and analogously to the battery, it permits
the fuel cell stack to be operated on a higher power level and,
secondarily, it delivers energy to the system directly in terms
of heat.

B. Benchmark Tests for the Optimal Controller

During the development of the optimal warm-up controller,
certain approximations or assumptions had to be made at some
points (e. g. model reduction, linearization of the Hamiltonian).
In order to quantify their impact and that of the discrete
operation of the controller on the performance of the system,
the performance values of the feedback controlled solutions
were compared with the optimal warm-up times,J∗, emerging
from the direct feedforward optimization. The parameters of
the controller were set to their nominal values (Table II) and
the coolant controller was disabled (constant coolant mass
flow rate of ṁCt = 35 g/s). In Table IV the results of the
benchmark analysis are shown for various operating condi-
tions. For the situations investigated, the relative performance
loss of the controller with respect to the feedforward-optimized
solution, δJ , is below 2.4%. This result indicates that the
assumptions and approximations made are feasible and thus
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Fig. 7. Illustration of the controller operation for nominaloperating
conditions and controller parameters: (a) state plane illustration of the control
law and of the state trajectory of the optimally controlled system, (b)
corresponding control signals.

legitimates the methods applied for the controller development
and implementation.

C. Illustration in the State Plane

In Figure 7(a) the switch curves of the optimal control are
illustrated in the state plane. For each control variable, the
switch curves divide the state space into regions over whichthe
corresponding control variable is constant (0 or 1). The shapes
of these switch curves, which are functions of the model and
of the controller parameters (target state vector) as well as
of the operating conditions, determine the characteristics of
the controller. The operation of the controller is additionally
affected by the value of the function tolerance used to termi-
nate the iterative calculation ofλ2. The termination tolerance
results in hystereses in the switching logic. In Fig. 7(a), these
hystereses are indicated by dash-dotted lines along the switch
curves. The blank regions in Fig. 7(a) represent the set of
input state vectors for which the control law yields no solution.

Inside these areas, the controls are determined by the heuristic
rule: if SOC ≥ SOCf , both control signals are set to zero,
u1 = u2 = 0, and if SOC < SOCf , the fuel cell stack is
turned on, and the heater off,u1 = 1 andu2 = 0, respectively.
Inside the upper region (SOC ≥ SOCf ), the heuristic rule
causes the system to enter into the control region withu∗

1 = 0
and u∗

2 = 1, whereas inside the lower region, the heuristic
controls force the system trajectory to proceed parallel tothe
region boundary. Trajectories inside the lower heuristic region
can not reach the target state.

The operation of the controller for nominal operating con-
ditions and controller parameters (Table II), with a coolant
mass flow rate ofṁCt = 35 g/s is illustrated in Fig. 7(a)
and 7(b). Figure 7(a) shows the state trajectory of the opti-
mally controlled system in the state plane. In Fig. 7(b), the
corresponding control signals are shown against time. The
state trajectory of the controlled system starts at the initial
state (TSys(0) = 25◦C, SOC(0) = 0.7) and reaches a switch
curve for u1 after approximately 75 s. At that moment the
stack control signal changes fromu1 = 0 to u1 = 1. The
state trajectory then follows the switch curve for about 120s.
Due to model uncertainties the state trajectory crosses the
hysteresis limit at an elapsed time of approximately 195 s.
This causes the controller to turn off the stack (u1 = 0). As a
consequence, the state trajectory crosses the hysteresis limit in
the opposite direction. Soon after, when the trajectory exits the
hysteresis area (at the other boundary), the stack is turnedon
again (u1 = 1). A similar control action can be observed just
before the end of the warm-up, where a final control action
is necessary to reach the target state. During almost the entire
warm-up phase the heater is on (u2 = 1).

D. Optimally Controlled System Warm-up Under Variable
Operating Conditions

A warm-up under variable power demands is used to
demonstrate the full functionality of the optimal feedback
control system developed. For this functionality analysis, the
power signal of Fig. 8(a) is used. Apart from the power
demand, the nominal operating values of Table II are applied
to the system. Besides the power demand at the input of the
system, Fig. 8(a) also shows the low-pass-filtered signalP IF

Out .
It can be shown that the choice of the time constantτIF of the
input filter (61) is not critical, i. e. the elapsed warm-up time is
only slightly affected byτIF over a broad range of values. The
time constant was set toτIF = 60 s. The first and the second
subplots of Fig. 8(b) show the output signals of the optimal
warm-up power controller. For the desired stack current,Ides

St ,
a temperature-dependent upper limit,Imax

St = Imax
St (TMean),

was defined to take into account cold-start transient power
limitations (indicated by a dotted line). The normalized heater
signal, uHT , is selected between 0 (off) and 1 (on with
nominal power). The sample time of the power controller
was set to∆ts = 3 s. The third subplot shows the mean
system temperature,TMean , and the component temperatures
TCS , TPS , and THM . The state of charge of the battery,
SOC, is shown in the fourth subplot. The terminal condi-
tions,TMean(tf ) = T f = 50◦C andSOC(tf ) = SOCf = 0.7,
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Fig. 8. Simulation results for an optimally controlled systemwarm-up:
(a) power demand signal and output signal of the controller input filter
(the remaining inputs were set to be constant,λdes

Air ≡ 2, TAmb ≡ 25◦C,
THM In

mAir ≡ 20◦C, TPS In
mH2

≡ 40◦C), (b) control signals and resulting state
trajectories and output trajectories.

are each identified by a circle. In subplot 5 the battery
current, IBat , is plotted. Positive values mean discharging
of the battery, negative values indicate charging. The last
subplot of Fig. 8(b) shows the input signal∆TPS and the
control signalṁCt of the coolant flow controller. The max-
imum temperature gap over the power section was set to

∆Tmax
PS = 10◦C, and the minimum coolant mass flow rate

was defined aṡmmin
Ct = 10 g/s. The fan signaluFan is equal to

zero. All controller parameters correspond to the values given
in Table II.

Despite the erratic power demand, the power controller
switches the output signals only a few times. This behavior
is a direct consequence of the averaging of the power demand
at the controller input and of the discrete controller operation.
However, the predefined state of charge of the battery is
reached exactly at the end of the warm-up phase (charge
sustainment), which is defined to be completed when the
terminal temperature is reached. In the example shown in
Fig. 8, a warm-up time of 437 s results (indicated by a dotted
vertical line). At the beginning of the warm-up, the heater is
on and the power is drawn from the battery. Consequently,
the temperature of the system (specifically the temperature
of the cooling system) rises and the state of charge of the
battery decreases. After approximately 170 s the fuel cell stack
is turned on to generate maximum electric power. The surplus
power recharges the battery and the waste heat of the stack
causes an increased heat flow to the system. Towards the
end of the warm-up, the controller toggles the control signals
to compensate for prediction errors. The coolant controller
regulates the coolant mass flow rate as expected. When the
heat generation inside the power section is small, the coolant
mass flow rate is at its minimum value. Once the maximum
tolerated temperature difference is reached, the controller
increases the mass flow rate accordingly. Temperature offsets
of less than 0.5◦C are observed.

VI. CONCLUSION

A control-oriented mathematical model of the transient be-
havior of a hybrid fuel cell power system with auxiliary heater
has been introduced. On the thermal part, it differentiatesfour
component temperatures, namely the temperature of the power
section, the temperature of the humidification section, andtwo
temperatures of the cooling system. On the electric part, it
models the fuel cell polarization, the power converter, andthe
battery with its state of charge. Due to the modeling approach
based on physical principles there are only a few experiments
necessary for the parameter identification. Hence, the model is
applicable to different systems with little effort. The thermal
part of the model and the polarization were validated against
experimental data. Dynamic as well as static phenomena are
reproduced accurately. From this model, a simplified version
was derived to be used for the controller design. The reduced-
order model constitutes a nonlinear, second-order system,
which was shown to properly reproduce the mean system
temperature and the state of charge of the battery.

The aim of minimizing the system warm-up time subject
to a terminal state-of-charge constraint, which enables the
charge-sustaining operation, has been transcribed into anop-
timal control problem formulation. A solution to this problem
was derived from the necessary conditions of Pontryagin’s
Minimum Principle. The careful statement of simplifications
and assumptions and the appropriate combination of the con-
ditions for optimality allowed the formulation of the optimal
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solution in a feedback manner. Besides algebraic calculations,
the controller has to compute the zero of an integral equation
to determine the optimal output signals. Due to its simple
structure this controller is suited to be applied on-line. More-
over, its application to different systems should be feasible
with minor effort, as its design is model-based. The optimal
power controller, which controls the heater operation and the
electrical current of the stack, was extended with a coolant
controller. The coolant controller limits the spatial temperature
gradient of the power section.

For various operating conditions and a set of controller
parameters the optimal performance values of the controlled
system has been compared with the solutions obtained with
a direct feedforward method. The results confirmed the opti-
mality of the control system derived. The relative performance
losses, which mainly originate from the simplifications made
during the controller design, amount to less than 2.4%. A sim-
ulated system warm-up demonstrated the functionality of the
controller. As the optimal warm-up power controller accounts
for cold-start transient power limitations of the fuel cellstack
and determines the control signals subject to the model-based
prediction, the predefined terminal constraints are exactly met.
Simultaneously, a short system warm-up time to full power
results. Compared to a system without battery nor auxiliary
heater, the simulation showed a warm-up time reduced by 91%
for the optimally controlled configuration proposed.

Further applications for the model and the optimization
results gained throughout the course of this project are likely.
The model should be readily employable for general thermal
transient simulations, parameter investigations, state estima-
tion, or model-based temperature controller designs. Equally,
the direct feedforward optimization could be used for system
parameter optimizations, as for example to determine the
optimal size of the battery or of cooling system components.
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