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Evaluating the Influence of Ice Microphysics on an Idealized Simulation of Orographic Precipitation  

•  CM1 used to simulate idealized flow over a bell-shaped mountain for dry, warm-rain only, and ice microphysics simulations for different initial parameters  
•  Addition of moisture lessens wave breaking and weakens downslope winds and winds aloft where clouds develop  
•  Addition of ice microphysics produces similar flow structures, but less precipitation, and contributes to cloud dehydration  
•  Future work will involve sensitivity experiments exploring the effects of perturbing ice microphysics parameters 
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CM1 Model Configuration  

Results Conclusions  
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CM1, release 17 (Bryan and Fritsch 2002) 

•  Understanding sensitivity to ice microphysics in orographic 
precipitation events 
Ø  Addition/modification of ice processes has been shown to 

impact surface precipitation (Colle and Zeng 2004; 
Stoelinga et al. 2003)  

•  Starting with moist neutral flow over bell-shaped mountain  
Ø  Moist neutral conditions common in producing heavy rain 

during non-convective events  
Ø  Following the work of Miglietta and Rotunno 2005, 2006  
•  Found non-linear dependence of simulated rainfall to 

model parameters, such as mountain geometry and ice 
microphysics  
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Future Work  What is the sensitivity of dynamical structures and 
surface precipitation to the addition of ice microphysics? 

•  Quasi-2D 10-hr simulation  
•  2-km horizontal grid spacing  
•  20-km domain height 
•  59 vertical levels (stretched) 
•  Constant wind with height  

Initial 
Parameters Case 1 Case 2 

U 15 m s-1 13 m s-1 
N2 1x10-5 s-2 4x10-5 s-2 

θsfc 288 K 292 K 
RHsfc-5km 90% 95% 

Hmtn 2 km  2.35 km  
Wmtn 30 km  30 km  
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Simulations  
•  Dry – no moisture included (imoist = 0)  
•  Warm-rain microphysics – Kessler (1996) scheme  
•  Ice microphysics – NASA-Goddard version of Lin, Farley, 

Orville (1983; LFO) scheme 
-  3 ice species: cloud ice, snow, graupel 
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Warm-rain  Ice 

Future Work will include: 
•  Understanding substantial differences between 

LFO and MOR schemes  
•  Systematic exploration of sensitivities to ice 

parameter perturbation (Tushaus et al. (2015) 
have already looked at thermodynamic 
parameters and mountain geometry)  
-  Will changes to microphysics have effect of 

similar magnitude?  

•  Stronger impact on dynamics from addition 
of moisture (dry to warm-rain) than ice 
microphysics 

•  Addition of ice mainly acts to impact 
precipitation and hydrometeor development, 
not much impact on dynamical structures  

•  Bergeron-Findeisen process may be responsible 
for cloud dehydration in ice simulations, which 
can impact surface precipitation 

•  Similar results found when using different initial 
parameters  
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Atmospheric Observations, Simulations, and Statistics Group 
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(TOP) Vertical cross-sections for (a) dry run, (b) warm-rain run, and (c) ice run at hour 10: cloud water (g/kg), shaded gray contours; rain (> 0.2 g/kg), black contours; snow (> 0.2 g/kg), red 
contours; graupel (> 0.2 g/kg), blue contours; u- and w-direction streamlines colored by u-wind speed (m/s).  All plots for Case 1 initial parameters.  
 
(BOTTOM) Hovmöller diagram of hourly precipitation (mm) for (d) warm-rain run, and (e) ice run. All plots for Case 1 initial parameters.  
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(TOP) Vertical cross-sections for (f) dry run, (g) warm-rain run, and (h) ice run at hour 10: cloud water (g/kg), shaded gray contours; rain (> 0.2 g/kg), black contours; snow (> 0.2 g/kg), red 
contours; graupel (> 0.2 g/kg), blue contours; u- and w-direction streamlines colored by u-wind speed (m/s).  All plots for Case 2 initial parameters.  
 
(BOTTOM) Hovmöller diagram of hourly precipitation (mm) for (i) warm-rain run, and (j) ice run. All plots for Case 2 initial parameters.  
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Case 1 − Warm
Case 2 − Warm
Case 1 − Ice
Case 2 − Ice

m/s 

DRY to WARM-RAIN 
•  Downslope winds become slower above mountain top, 

and between 8-11 km where clouds develop 
•  Lee wave breaking extends farther, depth is shallower, 

and become weaker (less backward motions) 
•  Faster winds near the surface do not extend as far 

downstream  
WARM-RAIN to ICE 
•  Precipitation still mainly over upwind slope  
•  Cloud dehydration occurs above 3 km where snow 

develops (especially upwind)  
•  Initially have similar rain rates, but weaken with time 

(due to cloud dehydration) 

Frm =
u
Nhm

= 2.37

Frm =
u
Nhm

= 0.875

DRY to WARM-RAIN 
•  Much slower downslope windstorm  
•  Much less turbulent mid-levels, winds slowed where 

clouds develop 6-10 km  
•  Upstream winds below 2 km are slightly faster  
WARM-RAIN to ICE 
•  Snow and graupel develop and remain fairly stationary 

(no downstream propagation) on lee side 
•  Mid-level cloud dehydrates where snow develops 

downwind (no impact on upwind slope precipitation) 
•  Rain rates are similar with time, still mainly over 

upwind slope  

For Frm > 1, flow ascends over obstacle 
without upstream deceleration  

For Frm <1, at least some depth of flow 
will be blocked by obstacle  

qs > 0.2 g kg-1 

qr > 0.2 g kg-1 

qg > 0.2 g kg-1 

m/s 

qc+qi (g kg-1) 

•  Use of 2-moment Morrison ice scheme (Morrison 
et al. 2009)  produces very different results (Case 
1 results shown here, similar Case 2 results not 
shown) 

Ø Laminar flow 
downstream, 
no downslope 
windstorm  

Ø Double-peaked 
precipitation 
spatial 
distribution 

(LEFT) Average precipitation rate (mm/hr) over six locations on the mountain (1-far upwind, 2-upwind slope, 3-top upwind, 4-top downwind, 5-downwind slope, 6-far downwind) for each case 
(see table in Simulations section) and warm-rain (solid) vs ice simulations (dotted).   

CASE 1 vs. CASE 2 
•  Precipitation upwind pulses with time and develops multiple narrow rain contours in Case 1 
•  Precipitation upwind is more steady with time and develops one main rain contour in Case 2 
•  Case 2 produces less precipitation in warm-rain simulation  
•  Average precipitation rates in ice simulations are more similar between cases  
•  Mid-levels are less turbulent, both upstream and downstream, in Case 2  
•  Case 1 snow development is substantial and propagates downstream, while in Case 2 the snow 

remains on lee side, above the downslope windstorm 
 
DRY vs WARM-RAIN vs ICE 
•  Addition of moisture led to weaker wave breaking downwind, shallower and slower downslope 

windstorm, and slower winds aloft where clouds developed on the lee side 
•  Ice simulations produce less rain upwind than warm-rain only  


