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Background



Introduction

In 1999, Fomin and Zelevinsky studied totally nonnegative

matrices.

They explored two questions:

1. How can totally nonnegative matrices be parameterized?

2. How can we test a matrix for total positivity?

We will explore the same questions for k-nonnegative and

k-positive matrices.
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k-Nonnegativity

Definition

A matrix M is k-nonnegative (respectively k-positive) if all

minors of order k or less are nonnegative (respectively positive).

Lemma

A matrix M is k-positive if all solid minors of order k or less are

positive.

Lemma

A matrix M is k-nonnegative if all column-solid minors of order k

or less are nonnegative.
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Factorizations



Chevalley generators

Loewner-Whitney Theorem: An invertible totally nonnegative matrix can

be written as a product of ei ’s, fi ’s and hi ’s with nonnegative entries.

ei (a) =



1 0 . . . . . . . . . 0
...

. . . 0 . . . . . .
...

0 . . . 1 a . . . 0

0 . . . 0 1 . . . 0
... . . . . . .

. . .
. . .

...

0 . . . . . . . . . 0 1


, fi (a) =



1 0 . . . . . . . . . 0
...

. . . 0 . . . . . .
...

0 . . . 1 0 . . . 0

0 . . . a 1 . . . 0
... . . . . . .

. . .
. . .

...

0 . . . . . . . . . 0 1



hi (a) =



1 0 . . . . . . 0

0
. . . 0

. . .
...

...
. . . a

. . .
...

...
. . .

. . .
. . . 0

0 . . . . . . 0 1
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Row and Column Reductions

Lemma

If a matrix M is k-nonnegative, it can be reduced to have a k − 1

“staircase” of 0s in its northeast and southwest corners while

preserving k-nonnegativity.

k − 1





k − 1︷ ︸︸ ︷
0 0 · · · 0

. . .
. . .

...
. . . 0

0 0

0
. . .

...
. . .

. . .

︸ ︷︷ ︸
k − 1

0 · · · 0 0



 k − 1
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Generators

Theorem

The semigroup of n − 1-nonnegative invertible matrices is

generated by the Chevalley generators and the K-generators.

The K-generators have the following form.

K(~x , ~y) =



x1 x1y1 . . . . . . . . . . . .

1 x2 + y1 x2y2 . . . . . . . . .

. . .
. . .

. . .
. . . . . . . . .

. . . . . . 1 xn−3 + yn−4 xn−3yn−3 . . .

. . . . . . . . . 1 yn−3 yn−2Y

. . . . . . . . . . . . 1 X


,

Y = y1 · · · yn−3
X = x2x3 · · · xn−3 + y1x3 · · · xn−3 + y1y2x3 · · · xn−3 + . . .+ y1 · · · yn−4.
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Relations

ej(a) · K(~x , ~y) = K(~u, ~v) · ej+1(b) where 1 ≤ j ≤ n − 2

en−1(a) · K(~x , ~y) = hn(b) · K(~u, ~v) · fn−1(c)

hj+2(c) · fj+1(a) · K(~x , ~y) = K(~u, ~v) · fj(b) · hj(c) where 1 ≤ j ≤ n − 2

f1(a) · K(~x , ~y) · h1(c) = K(~u, ~v) · e1(c)

hj+1(a) · K(~x , ~y) = K(~u, ~v) · hj(a) where 1 ≤ j ≤ n − 2.
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Generators

Theorem

The semigroup of n − 2-nonnegative upper unitriangular matrices

is generated by the ei ’s and the T -generators.

The T -generators have the following form.

T (~x , ~y) =



1 x1 x1y1 . . . . . . . . . . . .

. . . 1 x2 + y1 x2y2 . . . . . . . . .

. . . . . .
. . .

. . .
. . . . . . . . .

. . . . . . . . . 1 xn−3 + yn−4 xn−3yn−3 . . .

. . . . . . . . . . . . 1 yn−3 yn−2Y

. . . . . . . . . . . . . . . 1 X

. . . . . . . . . . . . . . . . . . 1


Y = y1 · · · yn−3
X = x2x3 · · · xn−3 + y1x3 · · · xn−3 + y1y2x3 · · · xn−3 + . . .+ y1 · · · yn−4. 9



Relations

ej(a) · T (~x , ~y) = T (~u, ~v) · ej+2(b) where 1 ≤ j ≤ n − 3

en−2(a) · T (~x , ~y) = T (~u, ~v) · e1(b)

en−1(a) · T (~x , ~y) = T (~u, ~v) · e2(b)
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Reduced Words

Alphabet A = {1, 2, . . . , n − 1, T }.
Let α be the word (n − 2) . . . 1(n − 1) . . . 1.

The reduced words are:

w ∈



w ′T w ′α is reduced,

w ′(n − 1)T w ′α is reduced,

w ′(n − 2)T w ′α is reduced,

w ′(n − 1)(n − 2)T w ′α is reduced,

w ′ w ′ < β orw ′ is incomparable to β.

where w ′ does not involve T .
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Bruhat Cells

Define V (w) to be the set of matrices which correspond to the

reduced word w . (Then V (w) = {ew1(a1)ew2(a2) · · · ewk
(ak)}.)

Theorem

For reduced words u and w , if u 6= w then V (u) ∩ V (w) = ∅.

Theorem

The poset on {V (w)} given by the Bruhat order on reduced

words {w} is graded.
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Bruhat Cells

Conjecture

The closure of a cell V (w) is the disjoint union of all cells in the

interval between ∅ and V (w).
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Cluster Algebras



k-initial minors

Definition

A k-initial minor at location (i , j) of a matrix X is the maximal

solid minor with (i , j) as the lower right corner which is contained

in a k × k box.

The set of all k-initial minors gives a k-positivity test!

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66


,



11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66


4-initial minors
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Motivation

With total positivity tests, can “exchange” some minors for others.

Example

M =

[
a b

c d

]
Both {a, b, c , detM} and {d , b, c , detM} give total positivity

tests.

Note

ad = bc + detM

i.e. have a subtraction-free expression relating exchanged minors.
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Definitions

Definition

A seed is a tuple of variables x̃ along with some exchange

relations of the form

xix
′
i = pi (x̃ \ xi )

which allow variable xi to be swapped for a new variable x ′i .

• frozen variables: not exchangeable

• cluster variables: are exchangeable

• extended cluster: entire tuple x̃

• cluster: only the cluster variables

A seed (plus all seeds obtained by doing chains of exchanges)

generates a cluster algebra. Our pi are always subtraction-free.

16



Total Positivity Cluster Algebra

Example

Initial seed: x̃ is minors of n-initial minors test. Corner minors

(lower right corner on bottom or right edge) are frozen variables.

There is a rule for generating the exchange relations for all other

variables.

Subtraction-freeness means that any seed reachable from the initial

one gives a different total positivity test.

Can we use this idea to get k-positivity tests? Yes!

17



k-positivity Cluster Algebras

Total positivity seed where all variables = minors.

Exchange polynomial uses minor of order > k =⇒ freeze variable.

Delete variables whose minors are “too big”.

Cluster variables: Exchange polynomials:

X 1
1 X 2

1 · X 1
2 + X12,12

X 2
1 X 3

1 · X 12
12 + X 1

1 · X 23
12

X 1
2 X 1

3 · X 12
12 + X 1

1 · X 12
23

X 12
12 X 1

2 · X 2
1 · det +X 1

1 · X 12
23 · X 23

12

Frozen variables:

X 3
1 X 23

12 X 1
3 X 12

23 det
18
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Getting Tests

Definition

The test cluster of a seed is the extended cluster, but with more

minors added until we have n2 which combined give a k-positivity

test. These extra test variables are the same for all seeds in the

cluster algebra.

Example

Restricted n-initial minors seed + missing solid minors of order k

= the k-initial minors test.

Don’t (in general) know how to choose test variables to get a valid

k-positivity test. Some seeds can’t be extended to give tests (of

size n2) at all!

19



Exchange Graph

Definition

The exchange graph has vertices = clusters, and edges between

clusters with exchange relations connecting them.

Example

For n = 2 total positivity cluster algebra:

a d

20



Example: n = 3, k = 2

For 3× 3 matrices, when we restrict exchanges to those only

involving minors of size ≤ 2, the exchange graph breaks into 8

components.

Only the two largest components provide actual 2-positivity tests.

These two components share 4 vertices that correspond to

different total positivity tests but restrict to the same 2-positivity

tests. We say that these 4 overlapping vertices form a “bridge”

between the components.
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Connected Components of 2-pos test graph for 3× 3 matrix
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Test Components

Frozen variables: c,g,C,G,A

Test variable: J

Frozen variables: c,g,C,G,J

Test variable: A
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k-essential minors

Definition

A minor is k-essential if there exists a matrix in which all other

minors of size ≤ k are positive, while that minor is non-positive.

In other words, a k-essential minor is one which must be present in

all k-positivity tests.

Conjecture

The k-essential minors are the corner minors of size < k ,

together with all solid k-minors.

So far, this conjecture has only been proven for the cases of k ≤ 3.

We also observe that in all known cases, a bridge involves

switching the positions of an essential minor in the extended

cluster with one outside it.
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Connecting Tests

Although there are many

choices to be made regarding

the exact order in which some

exchanges are made, we can

generally speak of a natural

family of paths linking the

k-initial minors test to its

antidiagonal flip.

If we ignore non-bridge

mutations and treat each

connected component as a

single vertex, we get a “bridge

graph”.

25



Connecting Tests

By the construction of the path,

all involved bridges switch out a

solid k-minor with a minor one

entry down and to the left of it,

yielding a total of (n − k)2

distinct bridges, that we can

represent as boxes in a

(n − k)× (n − k) square.

The components can thus be

indexed by Young diagrams,

with each box indicating a

specific bridge that must be

crossed to reach that

component from the one

including the k-initial minors. 26



n = 5, k = 2

→



2, 2 2, 3 1, 3 1, 4 1, 5

2, 1 23, 23 23, 34 12, 34 12, 45

3, 1 23, 12 123,123 123, 234 123, 345

4, 1 34, 12 234, 123 234, 234 234, 345

5, 1 45, 12 345, 123 345, 234 345,345



→ →



3, 3 2, 3 1, 3 1, 4 1, 5

3, 2 34, 34 23, 34 12, 34 12, 45

4, 2 45, 34 123,123 123, 234 123, 345

5, 2 45, 23 234, 123 234, 234 234, 345

5, 1 45, 12 345, 123 345, 234 345,345
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