Counting the points in the Hilbert scheme

Anna Brosowsky
[Collaborators: Murray Pendergrass, Nathanial Gillman] [Mentors: Dr. Amin Gholampour, Rebecca Black, Tao Zhang]

Department of Mathematics
Cornell University

MAPS REU Research Fair, 2016

Outline

(1) Background

- Modules
- Hilbert schemes
(2) Recursion
- Motivation
- Going down
- Coming up
- Formula

Definition

Definition

For a ring R, an R-module M is an additive abelian group with an operation $: ~ R \times M \rightarrow M$ such that for all $r_{1}, r_{2} \in R$, $m_{1}, m_{2} \in M$, we have

- $r \cdot\left(m_{1}+m_{2}\right)=r \cdot m_{1}+r \cdot m_{2}$
- $\left(r_{1}+r_{2}\right) \cdot m=r_{1} \cdot m+r_{2} \cdot m$
- $1_{R} \cdot m=m$
- $r_{1} \cdot\left(r_{2} \cdot m\right)=\left(r_{1} r_{2}\right) \cdot m$.

Examples:

- \mathbb{R}^{n} and \mathbb{Z}^{n} are \mathbb{Z}-modules using usual multiplication.
- Any ring R is an R-module over itself.

Torsion

Definition

Let M be an R-module, for R a ring. Then $m \neq 0 \in M$ is torsion if there exists some $r \neq 0 \in R$ such that $r m=0 . M$ is called a torsion module if every $m \in M$ is torsion. If no $m \in M$ is torsion, then M is torsion-free.

Examples:

- \mathbb{R}^{n} is a torsion-free \mathbb{R}-module, since $a \cdot \vec{v}=\overrightarrow{0}$ implies $a=0$ or $\vec{b}=\overrightarrow{0}$ for any $a \in \mathbb{R}$ and $\vec{b} \in \mathbb{R}^{n}$.
- $\mathbb{Z} / \mathbb{Z}_{n}$ is a torsion \mathbb{Z}-module since for any $a \in \mathbb{Z} / \mathbb{Z}_{n}$, $n \cdot a=n a=0 \in \mathbb{Z} / \mathbb{Z}_{n}$.

Definition

Definition

Let $k=\mathbb{F}_{q}$ be a finite field with q elements, and $R=k[y]$. The punctual Hilbert scheme of type $\left(m_{0}, m_{1}\right)$ is defined as

$$
\operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)} k^{2}=\left\{I \subseteq k[x, y] \mid k[x, y] / I \simeq m_{0} \rho_{0}+m_{1} \rho_{1},\right.
$$

The stratified version is defined as

$$
V(I)=0\} .
$$

$$
\begin{aligned}
\operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)\left(d_{0}, d_{1}\right)} k^{2}=\left\{I \in \operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)} k^{2} \mid\right. & \left.I\right|_{l} \simeq F_{I} \oplus T_{I} \\
T_{I} & \left.\simeq d_{0} \rho_{0}+d_{1} \rho_{1}\right\} .
\end{aligned}
$$

where F_{I} is a torsion-free R-module, T_{I} is a torsion R-module, and $\left.I\right|_{l}=I / x \cdot I$.

Example

I

$x \cdot I$

$I /(x \cdot I)$

- $I=\left\langle y^{4}, x y^{3}, x^{2} y, x^{4}\right\rangle \in \operatorname{Hilb}_{0}^{(4,5)} k^{2}$
- $x \cdot I=\left\langle x y^{4}, x^{2} y^{3}, x^{3} y, x^{5}\right\rangle$
- $I /(x \cdot I) \simeq R y^{5} \oplus k x y^{3} \oplus k x^{2} y^{2} \oplus k x^{2} y \oplus k x^{4}$
- $T_{I}=k x y^{3} \oplus k x^{2} y^{2} \oplus k x^{2} y \oplus k x^{4} \simeq 3 \rho_{0}+\rho_{1}$
- $F_{I}=R y^{5}$

Outline of our goal

- Find the generating function for the Hilbert scheme of points, which has the form

$$
\sum_{m_{0}, m_{1} \geq 0}\left(\# \operatorname{Hilb}^{\left(m_{0}, m_{1}\right)} k^{2}\right) \cdot t_{0}^{m_{0}} t_{1}^{m_{1}}
$$

where $k=\mathbb{F}_{q}$.

- Need to count the number of points in $\operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)} k^{2}$.
- Do this by counting points in the stratified version.
- $\operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)} k^{2}=\bigcup_{d_{0}, d_{1} \geq 0} \operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)\left(d_{0}, d_{1}\right)} k^{2}$, so

$$
\# \operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)} k^{2}=\sum_{d_{0}, d_{1} \geq 0} \# \operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)\left(d_{0}, d_{1}\right)} k^{2}
$$

- Specifically, want a recursion giving the number of points in stratified Hilbert scheme in terms of number of points in smaller Hilbert scheme

Getting I^{\prime}

For any ideal I, define $x \cdot I^{\prime}$ to be the kernel of the map $\left.I \rightarrow I\right|_{l} \rightarrow F_{I}$. Exact commutative diagram shows uniqueness.

For monomial ideals, get I^{\prime} by deleting the first column of the Young diagram, so if $I \in \operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)\left(d_{0}, d_{1}\right)} k^{2}$, then $I^{\prime} \in \operatorname{Hilb}_{0}^{\left(m_{0}-d_{1}, m_{1}-d_{0}\right)\left(d_{0}^{\prime}, d_{1}^{\prime}\right)} k^{2}$.

$$
\text { Why }\left(m_{0}-d_{1}, m_{1}-d_{0}\right) ?
$$

- Recurse by "chopping off" first column and sliding diagram over, then counting which ideals give same diagram.
- Same as removing last block in each row
- 0 in torsion part $\Rightarrow 1$ in last box.
- 1 in torsion part $\Rightarrow 0$ in last box.
- Also requires $d_{0}^{\prime} \leq d_{1}$ and $d_{1}^{\prime} \leq d_{0}$ in smaller scheme.

\longrightarrow| 0 | 1 | 0 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 1 | 0 | 1 | | | | | |
| 0 | 1 | 0 | 1 | 0 | 1 | | |

Recover I from I^{\prime}

Fix a torsion module T and map $\varphi: I^{\prime} \rightarrow T$, and define $I=\operatorname{ker} \varphi$. Exact commutative diagram shows if $F=\left.\operatorname{ker} I^{\prime}\right|_{l} \rightarrow T$ is torsion-free, then $\left.I\right|_{l} \simeq F \oplus x \cdot T$.

Choosing torsion-free

For any $I^{\prime} \in \operatorname{Hilb}_{0}^{\left(m_{0}-d_{1}, m_{1}-d_{0}\right)\left(d_{0}^{\prime}, d_{1}^{\prime}\right)} k^{2}$, the number of possible I it came from is the number of F such that F is a rank 1 torsion-free submodule of $\left.I^{\prime}\right|_{l}$ with $\left.I^{\prime}\right|_{l} / F \simeq T \simeq d_{1} \rho_{0}+d_{0} \rho_{1}$.

- Rank 1 since the torsion-free part is always the first column above the Young diagram, generated by single element y^{a}.
- $d_{1} \rho_{0}+d_{0} \rho_{1}$ since we require $x \cdot T \simeq d_{0} \rho_{0}+d_{1} \rho_{1}$ and multiplying by x switches the parity of basis elements.
Or, number of $F \subseteq F_{I^{\prime}}$, rank 1 and torsion free, with $F_{I^{\prime}} / F \simeq\left(d_{1}-d_{0}^{\prime}\right) \rho_{0}+\left(d_{0}-d_{1}^{\prime}\right) \rho_{1}$ times number of ways to embed into $\left.I^{\prime}\right|_{l}$.

How many F ?

From [1], at most one $F \subseteq F_{I^{\prime}}$ which works. If I^{\prime} is a monomial ideal, then $F_{I^{\prime}}=R y^{d_{0}^{\prime}+d_{1}^{\prime}}$ and $F=R y^{d_{0}+d_{1}}$. Basis for $F_{I^{\prime}} / F$ is $\left\{y^{j} \mid d_{0}^{\prime}+d_{1}^{\prime} \leq j<d_{0}+d_{1}\right\}$. Since
$F_{I^{\prime}} / F \simeq\left(d_{1}-d_{0}^{\prime}\right) \rho_{0}+\left(d_{0}-d_{1}^{\prime}\right) \rho_{1}$, must have $d_{1}-d_{0}^{\prime}$ even degree basis elements and $d_{0}-d_{1}^{\prime}$ odd degree ones. Three cases to check:
(1) If $d_{0}^{\prime}+d_{1}^{\prime}+d_{0}+d_{1} \equiv 0 \bmod 2$, then $d_{0}-d_{1}=d_{1}^{\prime}-d_{0}^{\prime}$.
(2) If $d_{0}^{\prime}+d_{1}^{\prime}+d_{0}+d_{1} \equiv 1 \bmod 2$ and $d_{0}^{\prime}+d_{1}^{\prime} \equiv 0 \bmod 2$, then $1+d_{0}-d_{1}=d_{1}^{\prime}-d_{0}^{\prime}$.
(3) If $d_{0}^{\prime}+d_{1}^{\prime}+d_{0}+d_{1} \equiv 1 \bmod 2$ and $d_{0}^{\prime}+d_{1}^{\prime} \equiv 1 \bmod 2$, then $d_{0}-d_{1}-1=d_{1}^{\prime}-d_{0}^{\prime}$.
so $d_{1}^{\prime}-d_{0}^{\prime}=d_{0}-d_{1}+(-1)^{d_{0}^{\prime}+d_{1}^{\prime}}\left(\left(d_{0}^{\prime}+d_{1}^{\prime}+d_{0}+d_{1}\right) \% 2\right)$.

How many ways to embed?

Suppose $F=R y^{d_{0}+d_{1}}, b_{1}, \ldots, b_{d_{0}^{\prime}}$ are basis for trivial torsion elements, and $c_{1}, \ldots, c_{d_{1}^{\prime}}$ basis for non-trivial torsion elements. If we don't care about type, then can embed F as

$$
\widetilde{F}:=R\left(y^{d_{0}+d_{1}}, \sum_{i=1}^{d_{0}^{\prime}} \beta_{i} b_{i}+\sum_{j=1}^{d_{1}^{\prime}} \gamma_{j} c_{j}\right)
$$

for any $\beta_{i}, \gamma_{j} \in k . q$ choices for each $\Rightarrow q^{d_{0}^{\prime}+d_{1}^{\prime}}$ possible \widetilde{F}. We do care about type, so can only use torsion elements of same type as y^{a}. Therefore q^{r} possible F, where

$$
r=\left\{\begin{array}{lll}
d_{0}^{\prime} & \text { if } d_{0}+d_{1} \equiv 0 & \bmod 2 \\
d_{1}^{\prime} & \text { if } d_{0}+d_{1} \equiv 1 & \bmod 2
\end{array}\right.
$$

Re-CURSE-ion

$\# \operatorname{Hilb}_{0}^{\left(m_{0}, m_{1}\right)\left(d_{0}, d_{1}\right)} k^{2}=\sum_{\substack{0 \leq d_{0}^{\prime} \leq d_{1} \\ 0 \leq d_{1}^{\prime} \leq d_{0}}} q^{r} \cdot \# \operatorname{Hilb}_{0}^{\left(m_{0}-d_{1}, m_{1}-d_{0}\right)\left(d_{0}^{\prime}, d_{1}^{\prime}\right)} k^{2}$
$d_{1}^{\prime}-d_{0}^{\prime}=d_{0}-d_{1}+(-1)^{\left(d_{0}^{\prime}+d_{1}^{\prime}\right)}\left(\left(d_{0}^{\prime}+d_{1}^{\prime}+d_{0}+d_{1}\right) \% 2\right)$
where

$$
r=\left\{\begin{array}{lll}
d_{0}^{\prime} & \text { if } d_{0}+d_{1} \equiv 0 & \bmod 2 \\
d_{1}^{\prime} & \text { if } d_{0}+d_{1} \equiv 1 & \bmod 2
\end{array}\right.
$$

Let $a, b, c, d \in \mathbb{Z}_{\geq 0}$. The base cases are

$$
\begin{array}{ll}
\# \operatorname{Hilb}_{0}^{(0, b>0),(c, d)} k^{2}=0 & \# \operatorname{Hilb}_{0}^{(a, b),(c>b, d)} k^{2}=0 \\
\# \operatorname{Hilb}_{0}^{(a, b),(c, d>a)} k^{2}=0 & \# \operatorname{Hilb}_{0}^{(a \neq 0, b),(0,0)} k^{2}=0
\end{array}
$$

$$
\# \operatorname{Hilb}_{0}^{(0,0),(0,0)} k^{2}=1
$$

Summary

- Found recursion for number of points in stratified Hilbert scheme!
- Hard to work with, so unsuccessful in finding a closed form with this method.
- Still interesting, especially because of special case closed formulas.
- In Future
- Look at more special cases.
- Pursue abacus method.

References

圊 K. Yoshioka.
The Betti numbers of the moduli space of stable sheaves of rank 2 on \mathbb{P}^{2}.
J. reine angew. Math., 453:193-220, 1994.

R S.M. Gusein-Zade, I. Luengo, and A. Melle-Hernández.
On generating series of classes of equivariant Hilbert schemes of fat points.
Moscow Mathematical Journal, 10(3):593-602, 2010.
圊 Á. Gyenge, A. Némethi, and B. Szendrői.
Euler characteristics of Hilbert schemes of points on simple surface singularities.
http://arxiv.org/abs/1512.06848, 2015

