

Introduction

In char p commutative algebra, Frobenius split rings are nice, but strongly F-regular rings are even nicer (e.g., Cohen-Macaulay & normal). The splitting prime [1], F-pure centers [2], and Cartier cores [3] give obstructions to being strongly F-regular. Strong F-regularity and Frobenius splitting can be generalized to divisor pairs (Spec R, Δ), or even more broadly, to Cartier algebra pairs (R, \mathcal{D}) . In this most general setting, the F-splitting prime [4] and \mathcal{D} -compatible ideals are obstructions to strong F-regularity of the pair (R, \mathcal{D}) .

Motivation: Given (R, \mathcal{D}) and prime P, how "", "far" is (R_P, \mathcal{D}_P) from being strongly *F*-regular?" Given J, how "far" is it from being \mathcal{D} -compatible?

We define the Cartier core of an ideal J with respect to a Cartier subalgebra \mathcal{D} and prove some properties of it as a map on Spec R. As an application, we give an exact description of this map for Stanley-Reisner rings.

Notation & Assumptions

- All rings R have prime char p & are Noetherian.
- F^e_*R is R as an R-module over e-th iterated Frobenius map, i.e., $sF_*^e r = F_*^e(s^{p^e}r)$
- All rings R are F-finite, i.e., F_*R is
- finitely-generated R-module

Cartier algebras

Give the group $\bigoplus_{e>0} \operatorname{Hom}_R(F^e_*R, R)$ a graded noncommutative ring structure: for maps

 $\phi \in \operatorname{Hom}_R(F^e_*R, R), \quad \psi \in \operatorname{Hom}_R(F^d_*R, R),$ define $\phi \cdot \psi \in \operatorname{Hom}_R(F^{e+d}_*R, R)$ where $(\phi \cdot \psi)(F_*^{e+d}r) = \phi(F_*^e(\psi(F_*^dr))).$

Call $\mathcal{C}^R := \bigoplus_e \operatorname{Hom}_R(F^e_*R, R)$ the full Cartier algebra. Any graded subring $\mathcal{D} \subset \mathcal{C}^R$ with $\mathcal{D}_0 = R$ is a Cartier subalgebra.

Cartier core map for Cartier algebras

Anna Brosowsky

University of Michigan

F-Singularities

Fix pair (R, \mathcal{D}) , with $\mathcal{D} \subset \mathcal{C}^R$ a Cartier subalgebra

- (R, \mathcal{D}) is Frobenius split (or F-split) if $\exists e > 0, \ \phi \in \mathcal{D}_e \text{ with } \phi(F_*^e 1) = 1.$
- (R, \mathcal{D}) is strongly *F*-regular if $\forall r$ not in minimal primes of $R, \exists e > 0, \phi \in \mathcal{D}_e$ with $\phi(F_*^e r) = 1$.
- Ideal $J \subset R$ is \mathcal{D} -compatible if $\forall e > 0, \phi \in \mathcal{D}_e$, have $\phi(F^e_*J) \subset J$. Equivalently, for the quotient ring R/J, ϕ induces a map in $\mathcal{C}_e^{R/J}$.

Cartier core

For $J \subset R$ and $\mathcal{D} \subset \mathcal{C}^R$, the *Cartier core* of J with respect to \mathcal{D} is

 $C_{\mathcal{D}}(J) := \bigcap_{e \in O} \{ r \in R \mid \phi(F_*^e r) \in J \; \forall \phi \in \mathcal{D}_e \}.$

Cartier core map

R an F-finite Noetherian ring; \mathcal{D} a Cartier subalgebra; $\mathcal{U}_{\mathcal{D}}$ the *F*-split locus of (R, \mathcal{D}) . We prove:

- Cartier core gives map $C_{\mathcal{D}}: \mathcal{U}_{\mathcal{D}} \to \mathcal{U}_{\mathcal{D}}$ which is continuous and preserves containment.
- The image of $C_{\mathcal{D}}$ is the set of \mathcal{D} -compatible ideals in $\mathcal{U}_{\mathcal{D}}$, and these are **fixed** by $C_{\mathcal{D}}$.
- The image is the set of minimal primes of Rprecisely when the pair (R, \mathcal{D}) is strongly F-regular.

Key Properties: General

Fix pair (R, \mathcal{D}) with $\mathcal{D} \subset \mathcal{C}^R$.

• Localization: if J ideal, W multiplicative set avoiding primes in Ass(J), then

$$C_{\mathcal{D}}(J) = C_{W^{-1}\mathcal{D}}(JW^{-1}R) \cap R$$
$$C_{\mathcal{D}}(J)W^{-1}R = C_{W^{-1}\mathcal{D}}(JW^{-1}R)$$

- Lattice: the set of Cartier cores forms a lattice under + and \cap
- If I

The \mathcal{C}^R -compatible ideals form the following lattice.

Application:	Stanley-Reisner	Ex

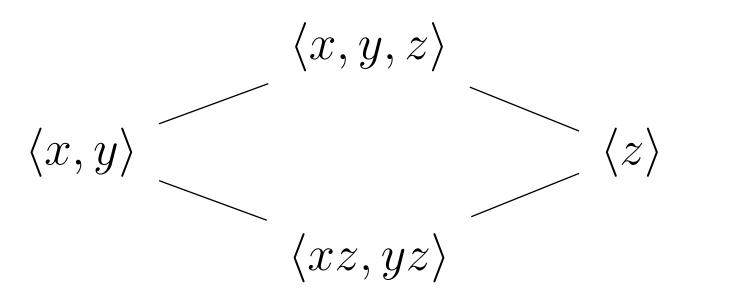
Let $R = k[x_1, \ldots, x_n]/I$ for k an F-finite field and I a square-free monomial ideal. We work with full	If <i>R</i> =
Cartier algebra, so write $C_R := C_{\mathcal{C}^R}$. We prove:	The ${\cal C}$
• For Q prime ideal,	
$C_R(Q) = \sum_{\substack{P \in \operatorname{Min}(R) \\ P \subseteq Q}} P$	
• For J any ideal,	$\langle x,$
$C_R(J) = \sum_{\substack{\mathcal{Q} \subset \operatorname{Min}(R) \\ \left(\bigcap_{P \in \mathcal{Q}} P\right) \subset J}} \left(\bigcap_{P \in \mathcal{Q}} P\right)$	
$\left(\bigcap_{P\in\mathcal{Q}}P\right)\subset J$	$\langle \mathcal{I} \rangle$
Key Properties: Quotients	
Assume $R = S/I$ is a quotient of regular ring S.	
• Fedder/Glassbrenner-like description:	
$C_R(J) = \left(\bigcap_{e \ge 1} J^{[p^e]} :_S (I^{[p^e]} :_S I)\right) / I$	
• Adjoining variables: For J' an ideal of $R[x]$	
with $JR[x] \subseteq J' \subseteq JR[x] + \langle x \rangle$, get	
$C_{R[x]}(J') = C_R(J)R[x]$	
$C_R(J) = C_{R[x]}(J') \cap R$	
• Homogenization: For S a polynomial ring, I	
homogeneous, h the minimal homogenization in	
$R[t]$, and $\delta: R[t] \to R$ via $\delta(t) = 1$ the	[2] Kar

R[t], and $o: \kappa[\iota] \to \kappa$ via $o(\iota)$ -corresponding dehomogenization, get $(\mathbf{C} (\mathbf{I}))^h = \mathbf{C} (\mathbf{I}^h)$

$$(C_R(J))^n = C_{R[t]}(J^n)$$
$$C_R(J) = \delta(C_{R[t]}(J^h))$$

Example: $k[x, y, z]/\langle xz, yz \rangle$

$$R = k[x, y, z] / \langle xz, yz \rangle, \text{ then}$$
$$\operatorname{Min}(R) = \{ \langle x, y \rangle, \langle z \rangle \}.$$



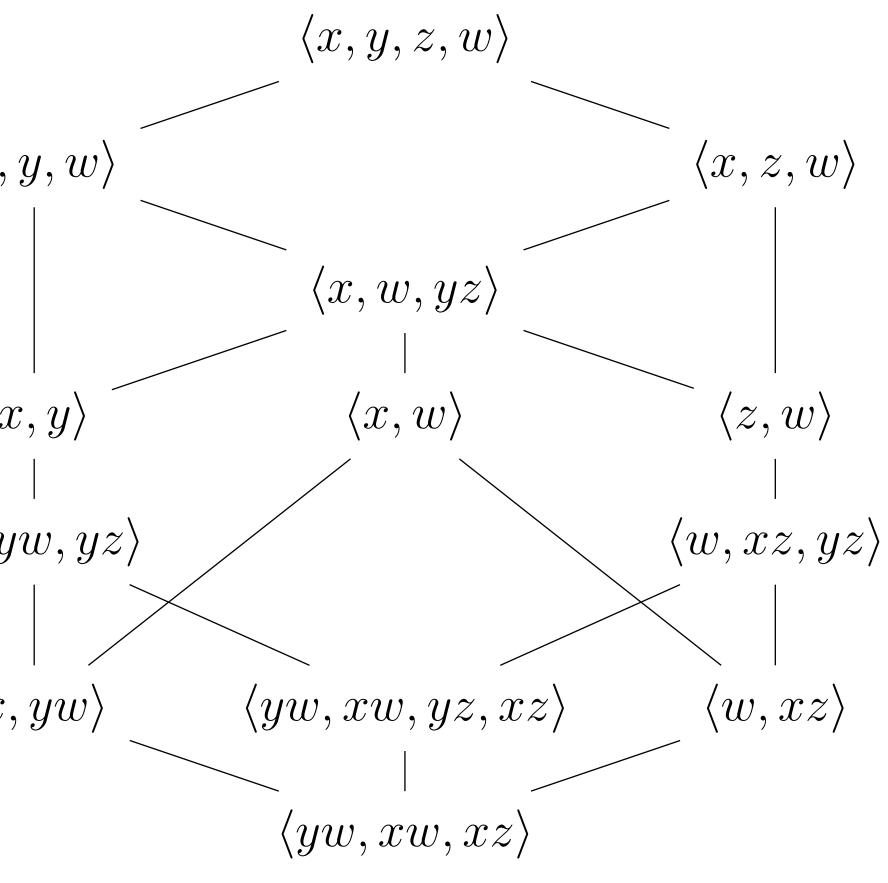
arXiv

This research was conducted at the University of Michigan while the author was partially funded by NSF DMS grants #1840234 and #2101075. Thanks to my advisor, Karen Smith.

Example: $k[x, y, z, w]/\langle yw, xw, xz \rangle$

 $=k[x,y,z,w]/\langle yw,xw,xz\rangle$ then $\operatorname{Min}(R) = \{ \langle x, y \rangle, \langle x, w \rangle, \langle z, w \rangle \}.$

 \mathcal{C}^{R} -compatible ideals, i.e., the image of the map form the following lattice.



References

M. Aberbach and Florian Enescu. structure of F-pure rings. th. Z., 250(4):791-806, 2005.

Schwede. Centers of F-purity. Math. Z., 265(3):687–714, 2010.

[3] Wágner Badilla-Céspedes. F-invariants of Stanley-Reisner rings. J. Pure Appl. Algebra, 225(9):106671, 19, 2021.

[4] Manuel Blickle, Karl Schwede, and Kevin Tucker. F-signature of pairs and the asymptotic behavior of Frobenius splittings.

Advances in Mathematics, 231(6):3232–3258, 2012.

Acknowledgements

