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1 What is Class Field Theory?

Class Field Theory is the study of abelian extensions of global fields. In our seminar, we will mainly focus on

number fields, i.e. finite extensions of Q. As a small digression, the other type of global fields is finite extensions of

Fq(t). Indeed there is also class field theory on function fields, say elliptic curves. It is related to something called

complex multiplication, though we will not study this in the seminar.

The name “Class Field Theory” comes as there are some correspondences between some ideal classes and abelian

extensions of K. The motivation for this subject is the reciprocity laws, dated back to Gauss. One of Gauss’

favorite results is his quadratic reciprocity law, stating that if p, q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

where
(
−
−

)
is the Legendre symbol, i.e. the non-trivial quadratic character modulo q or p respectively.

2 Artin Map and Artin Symbol

Let L/K be a Galois extension of number fields, p ⊂ OK , q ⊂ OL be primes with q above p. Then we have an

exact sequence relating the decomposition group, the inertia group, and the Galois group of residue fields.

1 −→ I(q|p) −→ D(q|p) −→ Gal(k(q)/k(p)) −→ 1.

If q is unramified, then the inertia group is trivial, so we have an isomorphism

D(q|p)
∼−→ Gal(k(q)/k(p)).

Since L,K are number fields, k(q)/k(p) is an extension of finite fields. In particular, the Galois group of the

residue field extension is generated by the Frobenius map Frob(x) = xNp. We can thus define the Frobenius

element associated to q/p, Frob(q|p) as the pull back of Frob along the isomorphism. Note that if q, q′ are distinct

unramified primes above p, then their Frobenius are conjugates in Gal(L/K). Thus, if L/K is abelian and p ⊂ OK

is unramified, then Frobp is well-defined in Gal(L/K).

We can now define the Artin symbol or the Artin map. Note that a prime p ⊂ OK is unramified iff it is relatively

prime to the discriminant DL/K . Denote I(D) to be the group of non-zero fractional ideals a in K with νp(a) = 0

for all p | DL/K . This group is generated by all the prime ideals in OK not dividing the discriminant, hence

unramified.

Definition 2.1. Let L/K be an abelian extension. The Artin map is a group homomorphism

I(D) −→ Gal(L/K)

p 7→ Frobp.

It is generally denoted by the Artin symbol

(
L/K

−

)
or

(
L

−

)
if K is understood.
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3 Ray Class Group

However, mathematicians have found that it is important to take care of not only prime ideals, but also embeddings

K ↪→ C. We call such embeddings infinite primes or infinite places, and prime ideals finite primes or finite

places. We can talk about them uniformly, using the notion of cycles or modulus. For this section, I think Milne’s

[1, Chapter V] does a better job than Stevenhagen [2], so I will mainly follow Milne. (After all Stevenhagen’s paper

is just an overview, so he does not include proof. This makes the paper short, but we need another source for a

proof.)

Definition 3.1. Let K be a number field. A cycle or a modulus m of K is a formal product

m :=
∏
p≤∞

pm(p),

where

• m(p) ∈ Z≥0 for all p, and m(p) = 0 for all but finitely many primes p;

• m(p) = 0 or 1 if p is a real place, i.e. an embedding K ↪→ R;

• m(p) = 0 if p is a complex place, i.e. not a real place.

We also write m = m0m∞, where m0 is the finite part of m (so it is an ideal in OK), and m∞ is the infinite part of

m.

Given a cycle m, we can define an equivalence relation on K×, similar to how we define an equivalence relation

modulo an ideal.

Definition 3.2. Let α, β ∈ K× and m be a cycle. We define

α ≡ β (mod ∗m),

if all of the following hold.

(a) if p | m0, i.e. p is a finite place with m(p) > 0, then νp(
α

β
− 1) ≥ m(p);

(b) if p | m∞ is an infinite place given by σ : K ↪→ C (thus σ : K ↪→ R), then σ(
α

β
) > 0.

Proposition 3.3. This gives an equivalence relation on K×.

Proof First, note that α ≡ β (mod ∗m) iff αβ−1 ≡ 1 (mod ∗m). This will be used a couple of times here.

Reflexivity is trivial. For symmetry, by the property above it suffices to show that α ≡ 1 (mod ∗m) implies 1 ≡ α
(mod ∗m). Suppose α ≡ 1 (mod ∗m) and p is a finite prime with m(p) > 0. Then νp(α − 1) ≥ m(p) > 0. If

νp(α) > 0 = νp(1), then νp(α− 1) = νp(1) = 0, a contradiction. Thus νp(α) = 0. Now,

νp(α−1 − 1) = νp((α−1 − 1)(α)) ≥ m(p).

Finally for transitivity, it suffices to show that if α, β ≡ 1 (mod ∗m), then αβ ≡ 1 (mod ∗m). To see that it

suffices, note that α ≡ β (mod ∗m) is equivalent to αβ−1 ≡ 1 (mod ∗m), and similarly for β ≡ γ (mod ∗m). We

also have that α ≡ γ (mod ∗m) is equivalent to (αβ−1)(βγ−1) = αγ−1 ≡ 1 (mod ∗m), showing that it is actually

sufficient to prove our result.

Now, suppose α, β ≡ 1 (mod ∗m). Then νp(α− 1), νp(β − 1) ≥ m(p). Note that

νp(αβ − 1) = νp((α− 1)(β − 1) + (α− 1) + (β − 1)) ≥ min{νp(α− 1) · νp(β − 1), νp(α− 1), νp(β − 1)} ≥ m(p),

since m(p) ≥ 1 and hence all of the 3 quantities are at least m(p). This completes the proof. �

Our goal is to define the ray class group of m.
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Definition 3.4. Define P (m) ⊂ I(m) to be the subgroup of principal fractional ideals in I(m).

Define K(m) = {α ∈ K× | νp(α) = 0 for all p | m0}. Thus we have an obvious map K(m) → P (m) sending α to

(α), with kernel O×K .

Also define the ray modulo m to be

R(m) := {αOK | α ≡ 1 (mod ∗m)}.

The ray class group of m is the quotient Clm := I(m)/R(m).

We will have an exact sequence involving the ray class group of m, Clm, and the ideal class group ClK .

Proposition 3.5. Let S ⊂ SpecOK be finite, i.e. it is a finite set of prime ideals in K. Then every ideal class in

ClK contains an integral ideal not divisible by any prime in S.

Proof It is done by Chinese Remainder Theorem. See [1, Ch. V Lemma 1.1].

As a corollary, fix a cycle m. Then m(p) > 0 for only finitely many primes. Thus we have a surjection

I(m) −→ ClK .

I(m) embeds into the group of all nonzero fractional ideals, which quotients out the subgroup of principal ideals

to have the ideal class group. As a result, the kernel of the above map is P(m). Instead, we can write an exact

sequence going from K(m) to I(m). Now we have proved the following proposition.

Proposition 3.6. We have the following exact sequence:

0 −→ O×K −→ K(m) −→ I(m) −→ ClK → 0.

Now we quotient out the ray modulo m equivalence to get Clm from I(m). Look the composition of maps K(m)→
I(m) → Clm. Pull back R(m) ⊂ I(m) to K(m), we get the subgroup {α ∈ K× | αOK ∈ R(m)}. Call this Km,1 as

in [1, Chapter V]. To summarize, we have the last proposition for this section.

Remark. Before we move on, in case you will be using [1, Chapter V] as a reference, his Km is our K(m). His

U = UK is our O×K , and his Um,1 = UK ∩Km is our O×K ∩K(m).

Proposition 3.7. We have the following exact sequence:

0 −→ O×K/(O
×
K ∩Km,1) −→ K(m)/Km,1 −→ Clm −→ ClK → 0.

We also have canonical isomorphisms

K(m)/Km,1
'−→

∏
p|m∞

{±1} ×
∏
p|m0

(OK/p
m(p))×

'−→
∏

p|m∞

{±1} × (OK/m0)×.

Thus Clm is a finite group, with order

hm = hK · [O×K : (O×K ∩Km,1)]−1 · 2r ·NK/Q(m0) ·
∏
p|m0

(
1− 1

NK/Q(p)

)
,

where hK is the class number of K and r is the number of real embeddings in m∞.

Proof We have shown the exact sequence already. For the isomorphisms, the second one is Chinese remainder

theorem. So we just have to show the first one.

Define K(m)→
∏

p|m∞{±1}×
∏

p|m0
(OK/p

m(p))× by sending α to σ(α)/|σ(α)| for each p | m∞ given by σ : K → R,

and to the quotient OK/p
m(p) for each p | m0. The latter part is well-defined (i.e. has image lying in (OK/p

m(p))×

, as α ∈ K(m). This is clearly a group homomorphism. If α is mapped to 1, then α ≡ 1 (mod ∗m) by definition.

Thus the kernel of this map is Km,1, and we have the first isomorphism.

The formula for hm follows directly from the short exact sequence. �
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4 Main Theorem of Global Class Field Theory

One last thing before the main theorem is the definition of a ramifying prime, when the prime is infinite.

Definition 4.1. Let L/K be an extension of number fields and p be an infinite place on K represented by

σ : K → C. We say that p ramifies if σ is a real embedding, and there exists an extension τ : L→ C that is not

real.

Now we can state the main theorem.

Theorem 4.2. Suppose L/K is an abelian extensions of number fields. Then:

(a) There is a cycle m divisible by all ramifying primes such that the Artin map factors through the ray class

group Clm,

I(D) Gal(L/K)

Clm

A

and the map Clm → Gal(L/K), which is also called Artin map, is surjective.

(b) Among all such cycles m, there is a minimal such one f(L/K) or simply f, called the conductor of L/K.

The conductor has the property that it acts like the discriminant. To be precise,

(a) p | f if and only if p is ramified in L/K;

(b) p2 | f if and only if p is wildly ramified in L/K.

(c) (Ray class field) Given a cycle m, there exists a ray class field Hm ⊂ Kab which is maximal in the sense

R(m) ⊂ ker(A : I(D)→ Gal(L/K)), and

Clm
'−→ Gal(Hm/K).

Therefore, Kab =
⋃

L/K finite abelianHf(L/K)Hf ⊂ Q.

5 More

We will also talk about idéles, and the main local theorem I believe. You can check the statements in [2].
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