
CLASS FIELD THEORY NOTES

YIWANG CHEN

Abstract. This is the note for the Class Field Theory seminar. In this talk, I want
to first prove some properties about the zeta functions and the L functions, and then use
those properties to prove the Universal Norm Inequality, and maybe the Chebotarev density
theorem.
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1. Zeta function

Firstly, in the case of both zeta function and the L function, we actually see that they are
a certain kind of series. This is the general object that we want to study.

Definition 1.0.1. Dirichlet Series is any series of the form ∑
∞
n=1 ann

−s where an are complex
numbers and that s is the complex variable with the common notation σ = Re(s).

Example 1.0.2. (1) In the case where an = 1, we recover the Riemann zeta function.
(2) If we have any characters χ(n) ∶ G → C, we can define an = χ(n), in this case, we

recover the L-function.

1.1. Partial Summation Formula. There is a common technique we use a lot in the
analytic number theory which we will use several times in this note, which is called the Abel
summation formula or partial summation. We will call it partial summation for the rest of
the note, since the name Abel summation might be mixed with Abel summation method.

Lemma 1.1.1. Let (a) and (b) be sequences in an arbitrary ring R.
Let An = ∑

n
i=0 ai be the partial sum of (a) from m to n.

Then:
n

∑
i=m

aibi =
n−1

∑
i=m

Ai (bi − bi+1) +Anbn −Am−1bm

In particular
n

∑
i=0

aibi =
n−1

∑
i=0

Ai (bi − bi+1) +Anbn

Proof. Take An = ∑
n
i=0 ai, we have

n

∑
i=m

aibi =
n

∑
i=m

(Ai −Ai−1) bi

=
n−1

∑
i=m

Ai (bi − bi+1) +Anbn −Am−1bm

If we take m = 0, then A−1 = ∑
−1
i=0 ai = 0. Thus we have

n

∑
i=0

aibi =
n−1

∑
i=0

Ai (bi − bi+1) +Anbn

�

Note that if we think about this, noting that bi+1 − bi = ∆bi, then this is similar to the
summation by parts in the Calculus, which is

∫ fg′dx = fg − ∫ f ′gdx

Example 1.1.2. (Baby example of how one usually uses the partial summation.)
Given ∑ bn converges, an is monotonely bounded, then SN = ∑anbn is converging uniformly.
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Proof. We consider the Cauchy’s criterion.

SM − SN = aMBM − aNBN +
M−1

∑
i=N

Bi(ai − ai+1)

= (aM − a)BM − (aN − a)BN + a(BM −BN) +
M−1

∑
i=N

Bi(ai − ai+1)

Note that as well

∣
M−1

∑
i=N

Bi(ai − ai+1)∣ ≤
M−1

∑
i=N

∣Bi∣∣(ai − ai+1)∣ ≤ B∑∣an+1 − an∣

.
Thus as N,M →∞, there exist N0, such that we have that ∣SM−SN ∣ ≤ ε for M,N > N0. �

1.2. Dirichlet Series.
Now we can proceed with our study of the Dirichlet series.

Proposition 1.2.1. If ∑ann−s converge for s = s0, then it converges for every s, such that
Re(s) > Re(s0) uniformly on compact subset (to an analytic function).

Proof. Note that to consider the uniform convergence, we just need to see the Cauchy’s
criterion. Note that

N

∑
n=M

ann
−s =

N

∑
n=M

an
ns0

1

ns−s0

, therefore we have

N

∑
n=M

ann
−s =

N

∑
n=M

an
ns0

1

ns−s0

= PN(s0)
1

N s−s0
+
N−1

∑
n=M

PN(s0)(
1

ns−s0
−

1

(n + 1)s−s0
) − PM−1(s0)

1

M s−s0

Moreover we have that Re(s) > Re(s0) + δ then using the identity

1

ns−s0
−

1

(n + 1)s−s0
= (s − s0)∫

n+1

n

dz

zs−s0+1

We have

∣
1

ns−s0
−

1

(n + 1)s−s0
∣ = ∣(s − s0)∫

n+1

n

dz

zs−s0+1
∣

≤ ∣s − s0∣
1

nδ+1

Therefore we have

∣
N−1

∑
n=M

PN(s0)(
1

ns−s0
−

1

(n + 1)s−s0
)∣ ≤ C

N−1

∑
n=M

1

nδ+1
(s − s0)

Therefore, given any ε > 0, exists N0 > 0 such that for N,M > N0,
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∣
N

∑
n=M

ann
−s∣ = ∣PN(s0)

1

N s−s0
+
N−1

∑
n=M

PN(s0)(
1

ns−s0
−

1

(n + 1)s−s0
) − PM−1(s0)

1

M s−s0
∣

< ε1 + ε2 + ε3 = ε

�

Therefore we see in the previous proposition that the definition about ”the line” of con-
vergence will make sense, actually we have the following definition.

Definition 1.2.2. If σ0 is the smallest real number such that ∑ann−s converges uniformly
on compact subset for Re(s) > σ0, then we call that σ0 is the abscissa of convergence.

Remark 1.2.3. Note that s1 = σ1 + it1 is such that ∑ann−s converge at s1 then an = O(nσ1)
since an

ns1 → 0. Therefore, we have that the convergence is absolute on Re(s) ≥ σ1 + 1 + δ for
δ > 0 using the comparison test with ∑ 1

n1+s .

1.3. Estimate for abscissa.

Proposition 1.3.1. An = a1+. . .+an, then ∣An∣ ≤ Cnσ1 for some absolute constant C, σ1 ≥ 0,
then the abscissa of convergence is ≤ σ1.
Note that An is bounded, then the abscissa of convergence is ≤ 1.

Proof. by partial summation we have
N

∑
n=M

ann
−s = ANN

−s +
N−1

∑
n=M

An(
1

ns
−

1

(n + 1)s
) −

AM−1

M s

Suppose we have σ > σ1 + δ and ∣
AN
Ns ≤

C
Nδ ∣, then we immediately will have

∣
AM−1

M s
∣ ≤ C/M δ, and ∣

AN−1
N s

∣ ≤ C/N δ

Moreover, we have that
N−1

∑
n=M

An(
1

ns
−

1

(n + 1)s
) = s

N−1

∑
n=M

An∫
n+1

n

1

zs
dz

Notice that using the condition in question, we have σ > σ1 + δ with some δ > 0, then

∣An∫
n+1

n

1

zs
dz∣ ≤ c∫

n+1

n

1

zσ−σ1dz
and thus

N−1

∑
n=M

An∫
n+1

n

1

zs
dz ≤ c∫

N

M

1

zσ−σ1
dz

≤ c(
1

Mσ−σ1+1
−

1

Nσ−σ1+1
)

1

σ − σ1

≤ c(
1

M δ+1
−

1

N δ+1
)
1

δ
Thus we have that the partial sum is convergent uniformly on compact subset if σ > σ1,

and the abscissa of convergence is thus ≤ σ1 �
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Now we are back to zeta function. With the tool above, we can deduce the desired corollary
as below.

Corollary 1.3.2. ζ(s) is a analytic for Re(s) > 0 except simple pole at s = 1 with residue 1.

Proof. Apply the proposition we just proved to ζ(s) = ∑
∞
n=1

1
ns with An = n, thus we have

that σ1 = 1 and thus ζ(s) converges for Re(s) > 1.
now we claim that ζ(s) has only one simple pole at s = 1. Consider the alternating zeta

functions for all r ∈ Z+ with a property ∣An∣ ≤ r,

ζ2(s) = 1 −
1

2s
+

1

3s
−

1

4s
+ . . .

ζ3(s) = 1 +
1

2s
−

2

3s
−

1

4s
+ . . .

ζr(s) = 1 +
1

2s
+ . . . +

1

(r − 1)s
−

1

rs
+ . . .

Then we can see that there are identities between the alternating zeta function and the
normal one, i.e.

(1 −
1

rs−1
)ζ(s) = ζr(s)

This analytic extends ζ(s) to the complex right half plane with possible pole s = 2πi
log r + 1

but this is not possible, since if there is a pole on the zeta function, then we need that
s = 2πi

log r1
+ 1 = 2πi

log r2
+ 1, take r1 = 2, r2 = 3, we will thus have 2n = 3m for some number, which

suggest that n =m = 0 and thus s = 1 will be the only simple pole if there is a pole there.
Notice as well on Re(s) > 1, we have

1

s − 1
= ∫

∞

1

1

xs
dx ≤ ζ(s) ≤ 1 + ∫

∞

2

1

(x − 1)s
dx =

1

s − 1

Thus we have

1 ≤ (s − 1)ζ(s) ≤ s

with s > 1. Thus we have that ζ(s) is necessary to have a pole at s = 1 with residue 1.
Therefore, we have that ζ(s) is a analytic for Re(s) > 0 except simple pole at s = 1 with

residue 1. �

Combining this result with Proposition 1.3.1 again, we have a very useful variation of the
proposition 1.3.1 as a corollary.

Corollary 1.3.3. Consider f(s) = ∑
∞
n=1

an
ns , if we have ∣An − np∣ ≤ Cnσ1, then we have f(s)

is analytic on Re(s) > σ1, except for simple pole ρ at s = 1.

Proof. Take g(s) = f(s) − ρζ(s), then we can just apply the proposition 1.3.1 on g(s) and
get the desired result. �
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1.4. Euler product. We will prove that ζ(s) has an Euler product expansion as

ζ(s) =∏
p

1

1 − p−s

Heuristically, if we do Taylor expansion on each 1
1−p−s , we will get that

∏
p

1

1 − p−s
=∏

p

(1 + p−s + p−2s + . . . + p−ns + . . .) = ∑
n

1

ns
= ζ(s)

However, there is a serious problem that we need to show here, i.e., the product we defined
above, might not be an analytic function at all and is thus not well defined.

However, this is not a hard work to show it.
Note that if z is complex with ∣z∣ < 1, then we have − log(1 + z) well defined, and have

corresponding Taylor series expansion and we have ∣ − log(1 + z)∣ ≤ ∣z∣. Therefore, we have

that ∣ − ∑p log(1 − 1
ps)∣ ≤ ∑p ∣

1
ps ∣ converges absolutely. Therefore, the exponential of this

function is well defined for Re(s) > 1 and equals to ∏(1 − 1
ps )

−1, converges for Re(s) > 1.

Note that as well, ∑p,m≥2
1

mpms converges uniformly and absolutely for Re(s) ≥ 1/2 + δ, so

we see that only ∑p
1
ps contributes to the pole. Therefore, we have

ζ(s) ∼
1

s − 1
and

log ζ(s) ∼ log(
1

s − 1
) ∼ ∑

p

1

ps

where f ∼ g if two function have singular point at 1 and differ by an analytic function at 1.

Remark 1.4.1. Note that aside from the Euler product we have other product expansion.
For example, using the Weierstrauss factorization theorem/Hadamard product theorem, we
can expand zeta function into a hadamard product

ζ(s) =
elog(2π) − 1 − γ/2

2(s − 1)Γ(1 + s/2)
∏
ρ

(1 − s/ρ)es/ρ

where in this expansion, the simple pole at s = 1, the trivial zeros at −2,−4, . . . and nontrivial
zeros at s = ρ are all well displayed in this expansion.
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1.5. General Zeta function.

Definition 1.5.1. Denote K as a number field. We thus define the Dedekind Zeta function

ζK(s) =∏
p

(
1

1 −Np−s
) = ∑

Q

1

NQ−s

Therefore similar to the ζ function case, we have

log ζK(s) ∼ ∑
p

1

Nps
∼ log

1

s − 1
∼ ∑
degp=1

1

Nps

Also, we have
ζK(s) = ∑

X∈I/P

ζ(s,X)

where

ζ(s,X) = ∑
Q∈X

1

NQs
= ∑

m

a(X,m)

ms

with a(X,m) = #{Q ∈X ∣NQ =m}.
Note that with the above definition we have that

n

∑
m=1

a(X.m) = #{Q ∈X ∣NQ ≤ n} = ρm +O(m1−1/d)

by Lang Chapter VI, Theorem 3. Therefore, using Corollary 1.3.3 we have that ζ(s,X) is
analytic on Re(s) > 1 − 1/d with a simple pole at s = 1, and the residue there is ρ.

Furthermore, using the relation that ζK(s) = ∑X∈I/P ζ(s,X), we have that ζK(s) is analytic
on Re(s) > 1− 1/d except for a simple pole at s = 1 with the residue hρ, where h is the class
number.

Remark 1.5.2. Note that in the original theorem, there is an explicit formula for ρ, combining
with the result we just get we can deduce class number formula within several lines.

Moreover, note that we can replace I/P by Ic/Pc, we can define another zeta function
similarly.

Definition 1.5.3. Denote K as a number field, with X ∈ Ic/Pc. We thus define the Zeta
function

ζK(s, c) = ∏
(p,c)=1

(
1

1 −Np−s
) = ∑

(Q,c)=1

1

NQ−s
= ∑
X∈Ic/Pc

ζc(s,X)

ζc(s,X) = ∑
Q∈X

1

NQs

Moreover, we have that ζK(s, c) is analytic on Re(s) > 1 − 1/d with simple pole at s = 1
with residue hcpc.
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2. L-function and the Universal Norm Index Inequality

2.1. L-function. Given K a number field, and c a cycle, we define a character χ of Ic/Pc
to be

χ ∶ Ic/Pc → C×

With the definition of the character, we can thus define L-function with this character.

Definition 2.1.1. Given K a number field, and c a cycle, and a character χ of Ic/Pc, we
define

L(χ, s) = ∏
(p,c)=1

(
χ(p)

1 −Np−s
) = ∑

(Q,c)=1

χ(Q)

NQ−s

where we can think of χ as a character on Ic which is trivial on Pc.

Moreover, similar to the arguments in zeta function case. we have

log(L(s,χ)) ∼ ∑
m,p∤c

χ(p)m

mNpms
∼ ∑

p

χ(p)

Nps

Also, due to the fact that

L(χ, s) = ∑
X∈Ic/Pc

χ(X)ζ(s,X)

We have that L(χ, s) is analytic on Re(s) > 1 − 1/d, with possible pole at s = 1 of order 1,
and the residue there is

Res(L(χ, s),1) = ∑
X∈Ic/Pc

χ(X)

, which is nonzero if and only if χ is trivial character.

2.2. Universal norm index inequality.

Theorem 2.2.1. Given K/k Galois, c cycle in k divisible by all primes ramified in K/k
then

(Ic ∶ Pcn(c)) ≤ [K ∶ k]

where n(c) is the subgroup of I(c) consisting of all norms NK
k A, where A is a fractional

ideal prime to c.

Proof. Let χ be any character of Ic/Pcn(c) =∶ G, we can thus view it as a charcter of Ic/Pc.
Since L(χ, s) is a analytic at s = 1, thus we know that L(χ,1) has order of zero m(χ) ≥ 0.

By the result in complex analysis, we know that we can write

L(χ, s) = (s − 1)m(χ)g(s,χ)

where g(1, χ) ≠ 0 and m(χ) ∈ Z ∩ [0,∞). Therefore, we have that

log(L(s,χ)) ∼m(χ) log(s − 1) ∼ −m(χ) log(
1

s − 1
)

Also we know that

log(L(s,χ)) ∼ ∑
X∈Ic/Pc

χ(X) ∑
p∈X

1

Nps

Therefore, after summing all the χ, we have that
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log(ζK(s)) + ∑
χ≠Id

∼ ∑
χ
∑
X∈G

χ(X) ∑
p∈X

1

Nps

∼ ∣G∣ ∑
X∈Pcn(c)/Pc

∑
p∈X

1

nps

Therefore, as s→ 1, we have

(1 −∑
χ

m(χ)) log(
1

s − 1
) ∼ ∣G∣ ∑

p∈Pcn(c),deg p=1

1

Nps

≥ ∣G∣ ∑
p∈Spl(K/k)

1

Nps

=
∣G∣

[K ∶ k]
∑

p∈K,p splits over k

1

Nps

≥
∣G∣

d
∑

p,deg p=1

1

Nps

∼
∣G∣

[K ∶ k] log( 1
s−1

)

As s → 1, we have that 1
s−1 is large, thus we have all m(χ) = 0 since m(chi) can only be

non negative integers. thus we have that

1 ≥
∣G∣

[K ∶ k]

and thus
[K ∶ k] ≥ ∣G∣ = (Ic ∶ Pcn(c))

�

2.3. Density theorem. Moreover, using the notation as above, class field theory gives that
given any group Ic ⊃H ⊃ Pc, there exist an abelian extension K/k such that H = Pcn(c,K/k).
Therefore, the conclusion that m(χ) = 0 hold for all nontrivial χ of Ic/Pc.

Theorem 2.3.1. Given a cycle c in k, χ be a nontrivial character of Ic/Pc. Then Lc(1, χ) ≠ 0

Corollary 2.3.2. given hc = [Ic ∶ Pc], and an ideal class X ∈ Ic/Pc, we have for s real,
s→ 1+,

log(
1

s − 1
) ∼ hc∑

p∈X

1

Nps

Proof. The proof is a similar computation to the proof we did in UNI.
Note that we have the relation

logLc(s,χ) ∼ ∑
Y ∈Ic/Pc

χ(Y ) ∑
p∈X

If we multiple the relation by χ(X−1) and sum over all χ, we have

log ζk(s) ∼ ∑
Y ∈Ic/Pc

∑
χ

χ(Y ) ∑
p∈X
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But then this sum is 0 unless the case where Y X−1 = 1, which occurs only when X = Y .
Thus

log ζk(s) ∼ log(
1

s − 1
) ∼ hc∑

p∈X

1

Nps

�

Definition 2.3.3. If M is a set of primes in k, then we consider the limit

lim
s→1+

∑p∈M
1

Nps

log( 1
s−1

)

This is what we call the Dirichlet Density of M , if it exists.

Corollary 2.3.4. Given an ideal class of Ic/Pc, the Dirichlet density of it is 1/hc

Proof. This is essentially a rewritting of the result of Cor 2.3.2. �
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