
Brill's POS tagger and a Morphology parser for Arabic

	Andrew Freeman, Ph.D. Candidate§

Department of Near Eastern Studies

2789 Frieze Bldg

Ann Arbor, Michigan,

48109, USA

andyf@umich.edu

Program in Linguistics

1089 Frieze Bldg

Ann Arbor, Michigan,

48109, USA

andyf@umich.edu
OR

3615 Burbank Dr.

Ann Arbor, MI, 48105

USA

andyf@umich.edu

Abstract

This paper documents some of the hurdles that were encountered during a semester long project to implement Brill's POS tagger for Arabic. These hurdles include: word ambiguity due to lack of short vowels, objects comprised of multiple lexemes, lack of tagged training corpora (until very recently), and the unavailability of machine-readable dictionaries. In general there seems no way to avoid the necessity for a front-end phase that partially parses the morphology and enclitics. Results were still promising that in the process of building the tagger's dictionary we could semi-automatically tag a training corpus.

1 Introduction

This project came about as the result of wanting to tag a reasonably large corpus of Modern Standard Arabic text. Even a reasonably large corpus, say 1,000,000 words, is impossibly large to tag by hand. To my knowledge there are no commercially available, much less public domain, part-of-speech taggers for Arabic. The frustrating reality was that the NLP experts with experience in dealing with European languages and scripts deemed the problem trivial and therefore not worth wasting time on. Conversely, the available Arabic language experts had no computer expertise and deemed the problem impossible to solve and therefore not worth wasting any time on.

Brill's "transformation-based" or "rule-based" tagger was chosen for several reasons. For one thing the source code is public domain. The source code can be located on the World-Wide Web by entering "Brill's tagger" into just about any search engine. For another thing, the fact that it is rule-based means that the rule list can be edited by hand in the boot-strap phase. Finally, once a corpus has been correctly tagged the rules generated during the training phase can be examined and perhaps optimized by hand.

2 General Statement of Some Startup Issues
There are several issues that need to be dealt with from the very start when using public domain software. This is especially true when using software for Arabic that was written assuming a Latin-based character set.

2.1 Which Code Page, which Transliteration Scheme

There are several script related issues with using Brill's tagger for Arabic. Not least of which is the fact that Brill's tagger assumes that input is ASCII input text and computerized Arabic text uses an entire array of machine specific character sets. In order to get up and running in the shortest time possible all input Arabic text was assumed to be Windows CP-1256 text.

Again, in the interests of time, it was decided to transliterate the Arabic text into a Latin-based script representation. It still needs to be determined, whether or not it would be a desired enhancement to change the tagger so that it can directly handle the Arabic text. Giving the tagger transliterated text has the advantage of localizing the problem of which script is being used for the Arabic.

For compatibility reasons it was decided to use the transliteration scheme devised by Tim Buckwalter and Ken Beesely at Xerox. This is with an eye towards possibly using Xerox's morphological as a front-end for the tagger at some time in the future. The morphological analyzer, that uses this transliteration scheme, can be accessed on the web at the following URL: http://www.xrce.xerox.com/research/mltt/arabic/input/paste_input.html.

The transliteration scheme that was used is shown below. The most important consideration was that every symbol in the Arabic code page correspond to exactly one and only one symbol in the transliteration scheme.

2.2 Procedures and Environment

There are several versions of Brill's tagger available on the Web. The actual source code used was the version that is located on Brill's home page.

The most accessible texts in Arabic on the web use the Windows code page CP-1256. Therefore the source code for Brill's tagger was compiled to run in a Windows environment.

A very simple filter was needed to transliterate the text into the latin-based transliteration scheme detailed above.

3 Arabic Orthography and Morphology Issues

In addition to the usually described issue of the root and pattern system of Arabic commented on elsewhere (Kiraz and Grimley-Evans, 1998, Kiraz, 2000, McCarthy, 1979), there are other issues with the Arabic orthography, that are related to the morphology that present problems for the tagger.

3.1 The Arabic Verb Paradigms: Conjugations or Embedded subject Pronouns?

The verbal system consists of two stems with each stem taking 13 affixes. These affixes correspond to the subject pronoun of the subject NP. Most analyses analyse these forms as attached, or embedded subject pronouns, since they are the same regardless of the verb stem to which they are affixed, and the detached pronoun, if present, is considered to be redundant. The ambiguity is increased by the fact that almost all texts in Standard Arabic are printed without any vowel marks. Even though this has no impact on the lexicon, it means that four of the perfective forms look exactly the same. Even with vocalized texts two of the imperfective forms are exactly the same. When we consider that there are 12 object pronouns that can affix affix to the end of the verb, we would need 169 ((12 * 13) +13) entries in order to place every possible combination of subject pronoun, verb stem and object pronoun into the lexicon as a separate lexical entry. The number is actually bigger than that, because there are two conjunctions (fa, wa) that can prefix to the verb with two modal particles, (la, sa) that can optionally sit between the conjunction and the verb.

The nouns are not quite as bad. However, every noun can be preceded by the definite article (Al), which can be preceded by at least two prepositions (li, bi), with the proviso that with (li) the alif disappears (ll) and of course the two conjunctions can precede any combination of the above. Any noun that appears without the definite article can have any one of the 12 possessive pronouns suffixed onto it.

3.2 Morphology and Orthography Issues for the Tagger

It should be obvious that the tagger's lexicon would be quite large if we had to create a lexical entry for every possible combination of base word plus every valid combination of base word plus enclitic. Not only does the lexicon become quite large, but the tag set becomes quite large. We are placing a large burden on the tagger to recognize all of the possible base forms and combinations.

The tagger needs to have a lexicon. At the same time, we do not want to have a separate entry for every possible combination of noun, article and preposition or every possible combination of conjunction, verb, and object pronoun. The solution being suggested here is to do a partial parse of the word and separate the orthographic word, or grapheme, into its component lexemes. Thus, according to this scheme, the grapheme "f-l-l-nAxb" would be separated out into the lexemes, "fa", "li", "Al", "nAxb". Similarly the verbal element "fsyktbhA" gets separated out into "fa", "sa", "ya", "ktub", and "hA".

First the text is run through a morphology parser to segment the graphemes into their component lexemes. It is this segmented text that is handed to the tagger. This allows us to create a lexical entry for each the twelve object pronouns separately. It is a little bit different, perhaps, to perceive the 3rd person "ya" prefix of the imperfective conjugation as a separate lexeme, but doing so saves us a lot of space in our lexicon. In any event recovering the original orthography from the lexeme segments is not difficult.

4 The Grapheme Segmenter and/or Morphology Parsing

The general idea for the grapheme segmenter is quite simple. Starting at the beginning of the grapheme and the end of the grapheme, try matches on nominal and verbal enclitic lexemes, which as it turns out is a closed set. Then with what is left see if there is a match in the segmenter's lexicon. It does seem a bit clumsy to have a lexicon for the segementer that is separate from the tagger's lexicon. A fully implemented production system would no doubt be able to do both lexicons as a single object.

This sort of pattern-matching problem is perfectly suited for the kinds of solutions provided by Finite-State Automata algorithms.

4.1 Lack of Public Domain Machine Readable Dictionaries

A final complication to recognizing the enclitic objects is that there is, to my knowledge as of this date, no public domain machine readable dictionaries for Arabic. At the completion of this project I hope to be able to provide one as a side benefit.

4.2 The Valid Root Patch

To augment my 4000 word glossary I used a list of roots that Tim Buckwalter kindly provided. This list of roots can be downloaded from http://www.qamoos.com. The root is an abstraction of the three consonants that tend to be the centroid for clusters of word meanings sharing a common semantic thread and the same three or four consonants in the same sequence with various predicable ablaut, prefixes and infixes. The idea here is to strip off anything that could be but does not have to be morphology added to the root. Various candidates are:

1) leading m.

2) leading mst

3) leading Ast

4) t as the second letter

5) any vowels, glides or glottal stops

6) insert a w or y to a two letter root after performing 1-5 above.

7) Append a w or y to a two letter root after performing 1-5 above

8) Double the final consonant of a two letter root after performing 1-5 above.

This is pretty ad hoc really, even though it resembles what I do when I encounter an unknown word and need to identify its root in order to look it up in the dictionary. It needs to be stressed that most Arabic dictionaries are arranged according to the root, which may or may not conform to a strict letter by letter sort. This is one of the reasons that there are no commercially available software tools that perform a traditional "by the root" dictionary sort order.

A more principled way to test a given string that is not in the mainline dictionary would be to generate a table containing all the possible verb and noun derivations for one root, taking into account the phonological rules for w, y and geminates. A match node in this table would contain an embedded tag of all the root combinations that could generate this string. For an input with three “strong” consonants there is only one possibility, ie, AstktAb can only be (KTB. For generated items missing a consonant, there can be more than one, but the set is finite. Artdt could be (RDD, (RDY, (RDW or (RTD, but only the first two exist. In an abstract way the traditional Arab grammarians use FEL to model patterns on a root. AftEt would match the first two letters of a root and proclaim that A, t, and t are morphology and that the third root is hidden, either in the orthography or by regular application of the morpho-phonemic phonology.

Once there is a Machine Readable Dictionary with reasonable coverage, perhaps 10,000 entries, this step will be reserved for those words that are not in the mainline dictionary.

Once the word has been segmented then the transliterated segmented text is passed to Brill's tagger. Currently the lexicon for the tagger and the lexicon for the segmenter are two separate objects. The tagger's lexicon needs to have at least one tag attached to it.

5 Goals and Progress
In its current state I am using this environment as a tool to semi-automatically tag text. With every new text I add rules to the tagger's rule files by hand and I add the new items to the tagger's lexicon file.

The hope is to eventually have a small 50,000 word tagged corpus to use for the training phase of Brill's tagger. I have learned quite recently, that in March 2001 the Linguistic Data Consortium (LDC) has started providing a tagged corpus of Modern Standard Arabic newspaper articles. Unfortunately I do not personally have the funding to subscribe to the LDC, nor are there any professors at my academic institution interested enough in Arabic NLP to subscribe, so I have no idea what this tagged corpus looks like. Specifically, I do not know the tag set or how they handled the multiple lexeme grapheme feature of written Arabic.

This particular funding issue was the reason why I did not use Xerox's morphological analyzer as the front end for the "segmenting" phase of the tagger's input. However it is not clear that we need a full-blown morphological analyzer. As I am trying to show, mereluy parsing for the fixed set

The final phase will be to provide a version of Brill's tagger that works for Arabic.

6 Analysis and a Conclusion or Two

Overall it seems pretty promising that with some perseverance we can come up with an acceptable tagger for Arabic in a reasonable amount of time, say less than 300 staff hours. It is not clear that building the training corpus using the still evolving rule set will take any less time than building a training corpus completely by hand. However, once the training corpus of 50,000 words and a tagged lexicon of 10,000 or lexemes is in place then we can start thinking about tagging larger pieces of text.

Levinger et. Al. (1995) discusses acquiring morpho-lexical probabilities from an untagged Hebrew corpus. Modern Israeli has all of the same “segmenting” problems that Arabic has. Moreover, Hebrew lacks, at least in 1995, both a public domain tagger and a publicly available large tagged corpus. Levinger talks about using a morphological analyzer to generate all possible analyses of the input string and then with the root and part-of-speech analyses generate all of the possible inflections and affixes for each analysis. Then use the probabilities of the occurrence of all inflections and affixations from a small hand-tagged corpus to estimate the most likely candidate, based on the probability of that lexical item having those affixes. This underscores a major flaw with the segmenter as it is currently implemented. It pulls a root out of the root extractor or a word from the lexicon and it treats the first one that it finds as the only possible analysis. It would be much more principled to pull out all possible roots and then find some way to determine the maximally likely argument.

Roche et. al. (1995) talk about optimizing the rules of Brill’s tagger. They point out that Brill’s tagger can redo and undo a step several times, and make many extra comparisons in the course of testing for the need to apply each rule on each input sequence in the input stream. I have not studied their algorithm in depth, but it is comforting to know that there is a way of optimizing the tagger once we start working with larger data sets. It is clear that we are not there yet with this project.

In the course of starting to craft some context rules for the tagger I immediately wanted to create a new transformation rule to tag adjectives that are not in the tagger lexicon. In Arabic the adjective follows the noun and agrees with it in definiteness, number and gender. I used the rule NN JJMS PREVBIGRAM NN AT (noun tag goes to adjective masculine singular when the previous bigram is NNM AT; NNM equals Noun Masculine gender and AT equals definite article). This worked OK in some cases but there is also the case when two nouns are juxtaposed to show ownership of the second noun over the first. The first noun can never have a definite article. This case incorrectly tagged the second one as an adjective as per the context rule. What I really wanted was the rule NN JJMS PREVTRIGRAM AT NN AT. I have looked at the source file finale-state-tag.c and found the place where the parse for this rule would go. This edit looks almost trivial. However adding the rule for learning this rule is still an unknown quantity. Once I have a tagged corpus together it will be interesting to see the rule that the learning algorithm produces for correctly telling the difference between an unknown adjective and an unknown noun in these two environments. The other rule that I have added to the context file works perfectly as far as I can tell. This rule uses the person prefix of the imperfect verb to accurately tag the following lexeme as a VB.

6.1 Still to do:

It would be good to further investigate alternative ways of dealing with the affixes.

Some options are:

1) Use the output from the Xerox morphology analyzer to generate all analyses and then use a Bayes rule to pick the most likely analysis based on probabilities and context.

2) Try another pubic domain tagger, such as ktagger (riding on top of the kimmo two-level morphology tool). The goal here would be to see if it is any easier to implement than the Brill tagger and also to see if it handles the affix morphology any more effectively.

3) The version of WinBrill that I downloaded from the Web with a French interface came with a lemmatiser. It might be productive to see if that lemmatizer tool can handle Arabic’s word formation rules and affix system..

4) At some point edit the tagger code to directly handle the various Arabic code pages.

In any event it looks like shoe-horning Brill’s tagger into working for Arabic is very feasible. When I am done, not only will I be able provide the community of Arabic linguists with a tagger, but also a training corpus and a tagged lexicon.

References

Brill, Eric (1995). “Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging.” Computation Linguistics, 21(4):543-565.

Kiraz, G and E. Grimley-Evans. (1998). “Multi-tape automata for speech and language systems: A Prolog implementation." In Derek Wood and Sheng Yu, editors, Automata Implementation. Lecture Notes in Computer Science, Number 1436. Springer Verlag, pages 87-103.

Kiraz, George. (2000). “Multitiered Nonlinear Morphology Using Multitape Fginite Automata: A Case Study on Syriac and Arabic.” Computation Linguistics, 26(1):77-105.

Levinger, Moshe; Ornan, Uzzi; Itai, Alon. (1995). “Learning Morpho-Lexical Probabilities from an Untagged Corpus with an Application to Hebrew.” Computation Linguistics, 21(3):383-404.

McCarthy, J. 1979. Formal Problems in Semitic Phonology and Morphology. Ph.D. thesis, MIT, Cambridge, MA..

Roche, Emmanuel; Schabes, Yves. (1995). “Deterministic Part-of-Speech Tagging with Finite-State Transducers.” Computation Linguistics, 21(2):227-253.

Appendix I The tag set:

. sentence closer . ; ? !

(left paren

) right paren

-- dash , comma

: colon

ABL pre-qualifier quite, rather

ABN pre-quantifier half, all

ABX pre-quantifier both

ABBR abbreviation

AP post-determiner many, several, next

AT article a, the, no

CC coordinating conjunction and, or

CD cardinal numeral one, two, 2, etc.

CS subordinating conjunction if, although

DT singular determiner this, that

DTI singular or plural determiner/quantifier

DTD singular or plural determiner/quantifier

DTS plural determiner

DTX determiner/double conjunction either

EX existential there

FUT future marker; imperfective conjugation

FW foreign word

HL headline (hyphenated after regular tag)

IN preposition

JJFS adjective, fem singular

JJFP adjective, fem plural

JJMS adjective, masc singular

JJMP adjective, masc plural

JJR comparative adjective

JJS semantically superlative adjective

JJT morphologically superlative adjective

MD modal auxiliary can, should, will or other

NC cited word (hyphenated after regular tag)

NNF singular or mass noun, fem

NNM singular or mass noun, masc

NNFA singular noun, fem, acc. case

NNMA singular noun, masc, acc. case

NNSF plural noun, fem

NNSM plural noun, masc

NNMS verbal noun, gerund

NNMSA verbal noun, gerund, acc. case

NN$ possessive singular noun

NNS$ possessive plural noun

NP proper noun or part of name phrase

NP$ possessive proper noun

NPS plural proper noun

NPS$ possessive plural proper noun

NR adverbial noun home, today, west

NRS plural adverbial noun

OD ordinal numeral first, 2nd

PIND indefinite pronoun

PN nominal pro everybody, nothing

PN$ possessive nominal pro

PP$1S 1st person singular poss. pro suffix

PP$2S 2nd person singular poss. pro suffix

PP$3MS 3rd person masc singular poss. pro suffix

PP$3FS 3rd person fem singular poss. pro suffix

PP$2D 2nd person dual poss. pro suffix

PP$3D 1st person poss. pro suffix

PP$1P 1st person plural poss. pronoun suffix

PP$2PM 2nd person masc plural poss. pronoun suffix

PP$2PF 2nd person fem plural poss. Pro suffix

PP$3PM 3rd person masc plural poss. pro suffix

PP$3PF 3rd person fem plural poss. pro suffix

PPI1S 1st person singular imp. subj pro prefix

PPI2FSFX 2nd person fem. singular imp. suffix

PPI2S3F 2nd & 3rd fem. imp. subj pro prefix

PPI3 3rd person imp. subj pro prefix

PPI1P 1st person plural imp. subj pro prefix

PPPR123FS 1st, 2nd and 3rd fem perf subj pro suffix

PPPR2S3F 2nd person & 3rd fem imp. subj pro prefix

PPPR3 3rd person imp. subj pro prefix

PPPR1P 1st person singular imp. subj pro prefix

PPPR2PM 2nd plural perf masc subj pro suffix

PPPR2PF 2nd plural perf fem subj pro suffix

PPPR2D 2nd dual perf subj pro suffix

PLRFIP feminine plural marker for perfect and imperfect conjugations

DUAL ending for dual nouns in construct, imperfect verbs in subjunctive or perfect verbs

PLURAL_VB plural suffix

PLURAL_OBL plural suffix in construct

PLNMF plural marker for fem nouns

PPS1 1st singular nominative personal pro

PPP1 1st plural nominative personal pro

PPS2 2nd singular nominative personal pro

PPS2D 2nd dual nominative personal pron

PPPM2 2nd plural nominative personal pro

PPPF2 2nd plural feminive personal pro

PPPM3 3rd. plural masc. nominative pro

PPPF3 3rd. plural feminine nominative pro

PPSF3 3rd. Singular feminine nominative pro

PPSM3 3rd. singular masculine nominative pro

PPP3D 3rd. dual nominative pro

PP$ possessive personal pro

PP$$ second (nominal) possessive pro

PPL singular reflexive/intensive personal pro

PPLS plural reflexive/intensive personal pro

PPO objective personal pro

QL qualifier very, fairly

QLP post-qualifier enough, indeed

QM question marker

RB adverb

RBNEG negating adverb

RBR comparative adverb

RBT superlative adverb

RN nominal adverb here then, indoors

RP adverb/particle about, off, up

TL title (hyphenated after regular tag)

UH interjection, exclamation

VB verb, base form

WDT wh- determiner what, which

WPIND indefinite relative pronoun

WPMS relative pronoun, masc singular

WPFS relative pronoun, fem singular

WPMP relative pronoun, masc plural

WPFP relative pronoun, fem plural

WPMD relative pronoun, masc dual

WPFD relative pronoun, fem dual

WQL wh- qualifier how

WRB wh- adverb how, where, when

Figure 1. Transliteration Scheme

ا = a, ب = b, ت = t, ث = v, ج = j,

ح = H, خ = x, د = d, ذ = *, ر = r,

 ز = z, س = s, ش = $, ص = S, ض = D,

 ط = T, ظ = Z,ع = E,غ = g, ف = f,

ق = q, ك = k, ل = l, م = m, ن = n,

ه = h, و = w, ي = y,

ى = Y, ة = p, _َ = a, _ِ = i, _ُ = u,

_ً = F, _ٍ = K, _ٌ = N, _ْ = o, _ّ = ~,

َا = aA,ِ ي = iy ,_ ُو = uw ,_ َوْ = aw,

 _ َيْ = ay, ء = ‘, أ = >, إ = <, ئ = },

ؤ = &, آ = |

Figure 2. the verb to write with some inflections and enclitics

ktub	(imperfect stem)

ya	(3rd person singular

masculine imperfective

prefix)

ya-ktub		(he-writes)

haa		(3rd person fem. sing.

object suffix)

ya-ktub-u-haa	(he-writes-indic.-

her)

sa		(future marker)

sa-ya-ktub-u-haa	(fut.-he-writes-

indic.-her)

fa		(resultative conj.)

fa-sa-ya-ktub-u-haa	(and so-fut.-he-writes-indic.-her)

In unvocalized text using the transliteration scheme outlined above, this would look like:

fsyktbhA

Figure 3. The noun "elector" with some possible "enclitics."

nAxb == elector

Al-nAxb == the elector

f-l-l-nAxb == and so unto

the elector

nAxb-h == his elector

l-nAxb-h == unto his elector

f-l-nAxb-h == and so unto

his elector

Figure 4: The imperfect verb morphology as lexemes with the associated tags.

>a PPI1S

t PPPR123FS

ta PPI23F

uw PLURAL_OBL

uwA PLURAL_VB

uwna PLURAL

ya PPI3

na PPI1P PLRFIP

Wn,yn,An (plurals & duals)

Valid Root

Possessive pronouns

q2

W,y, A (plurals & duals)

l

End 3

End 2

l

l

Start 3

w,f

A

b,k

w,f

w,f

Start 2

End 1

Start 4

Start 5

q1

End 4

Start 1

End 5

Valid root

Wn,yn, An (plurals & duals)

Figure 5:

Word segmenter FSA for nouns

"Valid root" is its own FSA

