Light-pulse atom interferometry in microgravity

G. Stern¹, 3, B. Battelier¹, R. Geiger¹, G. Varoquaux¹, A. Villing¹, F. Moron¹, O. Carraz², N. Zahzam², Y. Bidel², O. Chaibi³, F. Pereira Dos Santos³, A. Bresson³, A. Landragin³, and P. Bouyer¹

¹ Laboratoire Charles Fabry de l’Institut d’Optique, Centre National de la Recherche Scientifique et Université Paris Sud 11, Institut d’Optique Graduate School, RD 128, 91127 Palaiseau Cedex, France
² Office National d’Etude et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau, France
³ LNE-SYRTE, CNRS UMR 8630, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France

Received: date / Revised version: date

Abstract. We describe the operation of a light pulse interferometer using cold 87Rb atoms in reduced gravity. Using a series of two Raman transitions induced by light pulses, we have obtained Ramsey fringes in the low gravity environment achieved during parabolic flights. With our compact apparatus, we have operated in a regime which is not accessible on ground. In the much lower gravity environment and lower vibration level of a satellite, our cold atom interferometer could measure accelerations with a sensitivity orders of magnitude better than the best ground based accelerometers and close to proven spaced-based ones.

PACS. PACS-key describing text of that key – PACS-key describing text of that key

Atom interferometry is one of the most promising candidates for ultra-accurate measurements of gravito-inertial forces [1], with both fundamental [2,3,4,5] and practical (navigation or geodesy) applications. Atom interferometry is most often performed by applying successive coherent beam-splitting and -recombining processes separated by an interrogation time T to a set of particles [6]. Understanding matter waves interferences phenomena follows from the analogy with optical interferometry [7,8]: the incoming wave is separated into two wavepackets by a first beam-splitter; each wave then propagates during a time T along a different path and accumulates a different phase; the two wavepackets are finally recombined by a last beam-splitter. To observe the interferences, one measures the two output-channels complementary probability amplitudes which are sine functions of the accumulated phase difference $\Delta \phi$. This phase difference increases with the paths length, i.e. with the time T between the beam-splitting pulses.

When used as inertial sensors [9,10], the atoms are usually left free to evolve during the interrogation time T so that the interferometer is only sensitive to gravito-inertial effects. In particular, one avoids residual trapping fields that would induce inhomogeneities or fluctuations and would affect the atomic signal. The interrogation time T is consequently limited by, on the one hand, the free expansion of the atomic cloud, and, on the other hand, the free fall of the atomic cloud. The limitation of expansion is alleviated by the use of ultracold gases [11,12],

Fig. 1. Top: The atom interferometer assembled in the Airbus. The main rack on the left houses the laser sources and the control electronics. The rack on the front right contains the uninterruptable power-supply, the electrical panel and the high-power laser part. The rack on the back right hosts atom-optics part of the experiment. Bottom: the architecture of the atom interferometer.
but, due to free-fall distance, long-interrogation-time experiments require tall vacuum chambers [13]. Laboratory experiments are typically limited to about 300 ms of free fall with a 1 m-tall apparatus if the atoms are simply released, or more by launching them upward as in atomic fountains. This can be increased on much larger apparatuses: a 10 m-high atom interferometer is currently under construction at Stanford [3], giving access to 1.4 seconds of interrogation time. Free-fall heights of more than 100 m, corresponding to durations of about 5 seconds are also available in a drop tower (ZARM Bremen, Germany [14]).

Another solution consists in performing the experiments in microgravity achieved during parabolic flights provided by an aeroplane, as for the PHARAO prototype [15]. In the I.C.E. (Interférométrie Cohérente pour l’Espace) collaboration [16,17] that we present here, we are conducting cold-atom interferometry experiments in such an airplane (the A-300 0-G Airbus of NOVESPACE), which carries out ballistic flights. Microgravity is obtained via a 20 seconds-long parabola by steering the plane to cancel drag and follow free fall. The residual acceleration is on the order of $10^{-2}g$. With 90 parabolas per flight session, we have access to 30 minutes total of reduced gravity. In this letter, we present a first validation of our 0-g setup by obtaining Ramsey fringes with copropagating Raman transitions during parabolas, the interrogation times being longer than those we could obtain on Earth with the same configuration.

Transferring a laboratory-bound cold atoms interferometer into an automated experiment suitable for microgravity use poses many technical challenges [14,16,18,19]. We assembled a prototype atomic source suitable for inertial-sensing in an airplane from the I.C.E. collaboration components [16] (see Fig. 1). The atom interferometer is made of 4 elements: a vacuum chamber with optics; lasers sources for cooling and coherent manipulation of atoms; a stable oscillator (in our case a hyperfrequency oscillator or phase lock loop. The ultra-stable quartz has been chosen to be a good compromise to achieve low phase noise at low and high frequencies simultaneously (see Fig. 2), as in [15]. The multiplication is done in three steps: a first multiplication by 10 to 100 MHz (commercial Wenzel system), then multiplication by 2 and finally to 6.8 GHz by a comb generator (non-linear transmission line, Wenzel model 7100). Two direct digital synthesis (DDS) are used to adjust the cooling/remultiplying frequency difference and the Raman beams frequency difference respectively.

The microwave reference has been simplified compared to [16] in order to make it more reliable in the plane environment. It’s based on a direct multiplication of a 10 MHz quartz oscillator to 6.8 GHz without any intermediate oscillator or phase lock loop. The ultra-stable quartz has been chosen to be a good compromise to achieve low phase noise at low and high frequencies simultaneously (see Fig. 2), as in [15]. The multiplication is done in three steps: a first multiplication by 10 to 100 MHz (commercial Wenzel system), then multiplication by 2 and finally to 6.8 GHz by a comb generator (non-linear transmission line, Wenzel model 7100). Two direct digital synthesis (DDS) are used to adjust the cooling/remultiplying frequency difference and the Raman beams frequency difference respectively.

After amplification through a 5W Erbium-Doped Fiber Amplifier (EDFA), the slave laser is frequency doubled in free space with a double-pass in a 4 cm bulk PPLN crystal. We typically obtain ~ 300 mW at 780 nm. A 80 MHz Acousto-Optical Modulator (AOM) is used to switch between the MOT configuration (in which the non diffracted order of the AOM is used) and the Raman configuration (in which the first diffraction order is used, see Fig. 3). The use of the first order of the AOM for the Raman beam enables to create ultra-short pulses of light (10 fs typically). Additional mechanical shutters ensure a total extinction of the beams. Two optical fibers finally bring the MOT and the Raman beams to the science chamber.

The fibers deliver the light to the vacuum-chamber module [17]. The MOT fiber is sent to a 1-to-3 fiber beam-
splitter which delivers three beams which are then retroreflected and produce the MOT. The circularly-polarized Raman beam has a 1 inch diameter and is aligned with the horizontal plane. A 300 mG horizontal magnetic field is aligned with the Raman beam to raise the Zeeman degeneracy of the hyperfine sub-levels. The intensity of the lasers can be up to 20 times the saturation intensity of rubidium, which allows for short Raman pulses with weak velocity selection. The Raman detuning is about 700 MHz. The effective Rabi pulsation Ω_{eff} is about $2\pi \times 12.5$ kHz.

Finally, a magnetic shield around the science chamber prevents from changes of the Earth’s magnetic field directions during parabolas [17].

The science chamber in which we operate our atom interferometer is shown in Fig. 4. We load about 10^9 atoms in the MOT from a Rubidium vapor in 500 ms. We release the atoms from the MOT and further cool them down below 100 μK during a brief phase of optical molasses. Then, we prepare the atoms in the lower hyperfine state $F = 1$ using optical pumping. After the extinction of the MOT beams, we shine the atoms with two Raman light pulses separated by a time T. The duration τ of these pulses is chosen such that $\Omega_{\text{eff}} \times \tau = \frac{\pi}{2}$ (splitting of the matter wave). The Raman lasers are copropagating so that a nearly zero momentum is transfered during the Raman transition. In this configuration, the two successive $\frac{\pi}{2}$ pulses enable to record optically induced Ramsey fringes that are the signature of the matter waves interferences between the two interferometer paths [24, 25]. After the Raman pulses, the MOT beams are switched on at resonance and a photodiode monitors the fluorescence which is proportional to the number of atoms. During a few milliseconds, the microwave source is first turned off (absence of the repumping laser) to record the number N_2 of atoms in $F = 2$. Second, we switch on the microwave source (presence of the repumping sideband) and the photodiode detects the total number of atoms N. Plotting the ratio N_2/N with respect to the frequency of the Raman transitions sideband, we thus obtain Ramsey fringes, corresponding to the proportion of atoms having undergone
coherent transfer between the two states $|F = 1, m_F = 0 \rangle$ and $|F = 2, m_F = 0 \rangle$ (see Fig. 5).

The total duration of the sequence is about $T + 10 \text{ ms}$ from the end of the molasses phase until the detection. In the lab, i.e. in a 1-g environment, we can typically detect atoms until $T = 20 \text{ ms}$. Above this limit, the free fall of the atoms is too important and the atoms exit both the area of the Raman beams and the detection volume, as shown in the schematics of figure 5. However, T can be much longer during parabolas where the residual acceleration is on the order of 10^{-2}g. Figure 5 clearly illustrates the advantage of such a reduced gravity environment: with $T = 40 \text{ ms}$, we have recorded fringes which could not be observed on ground; we could operate at a largest pulse time interval of $T = 75 \text{ ms}$ (see Fig. 6) which represents a fringe period of $1/T \sim 14 \text{ Hz}$. We are prone to believe that the main limitation for longer values of T is due to the cloud temperature: the spatial extension of the cloud increases, and the Rabi frequency is then not the same for all the atoms, depending on the laser intensity at their position. It can explain the decrease of the fringes amplitude when T is longer. This effect is enhanced by the residual acceleration $- 4 \times 10^{-2} \text{g}$ during about 100 ms leads to motion amplitudes of 2 mm which is enough to reduce the Raman beams efficiency. Atoms also exit the detection area, and this makes the signal-to-noise ratio drop.

The vibration noise in the plane do not enable us to use the Raman beam in a velocity selective configuration yet [26], and thus we could not render this interferometer sensitive to inertial effects. Consequently, the residual acceleration noise has been measured with accelerometers locally anchored to the experimental apparatus. This noise corresponds to large residual accelerations ($\sim 10 \text{ cm/s}^2$) that will doppler shift the resonance and thus hinder it. Different techniques can be used to reduce the influence of these spurious accelerations: active stabilization of the retroreflecting mirror [27], post-corrections or feed-forward from an accelerometer signal on the Raman phase [28], or combination of vibrations measurements by a seismometer and the measured transition probabilities [29]. With the use of an appropriate vibration isolation, it will allow interrogation of the freely-falling atoms during several seconds, and reach high-precision not yet achieved with ground based atom inertial sensors. When implemented in space, with a residual noise lower than 10^{-6}g, the sensibility can reach that of the best spaced-based accelerometers[30].

To conclude, we have successfully tested a cold atom light pulse interferometer in aircraft parabolic flights. Our preliminary results show that laboratory experiments can be adapted for this new experimental platform and used to develop the future generation of air/spaceborn atom inertial sensors. Our experimental set-up offers an unprecedented platform for development of future fundamental physics instruments to test General Relativity of gravitation. Unlike orbital platforms, development cycles on ground-based facilities (either in a plane or in a drop tower) can be short enough to offer rapid technological evolution for these future sensors. In the future, high-precision drag-free space-born applications will require further progress to achieve longer interrogation times using ultra-low velocity atoms. New-generation of degenerate atomic source design are currently under study for that purpose [14, 16].

Acknowledgments

The I.C.E. collaboration is funded by the Centre National d’Etudes Spatiales, as are GS, and RG. This work is also
Fig. 6. Optical Ramsey fringes obtained in micro gravity for
T = 50 ms and T = 75 ms, (corresponding to respectively
18 mm and 35 mm of free fall under gravity). The x-axis is
the frequency of the Raman transition sideband delivered by
the hyperfrequency source and the y-axis represents the non-
normalized ratio N2/N.

supported by the European Space Agency under the "Space Atom Interferometry" program. Further support comes
from the RTRA ”triangle de la physique" and the European Union STREP consortium FINAQS. Laboratoire
Charles Fabry, ONERA and SYRTE are all members of IFRAF2.

References
http://link.aps.org/abstract/PRA/v74/e023615
http://link.aps.org/abstract/PRD/v78/e042003

2 Institut Francilien de Recherche en Atomes Froids :
http://213.251.135.217/ifraf/

23. F. Lienhart, S. Boussen, O. Carraz, N. Za-
zam, Y. Bidel, A. Bresson, Applied Physics B: Lasers and Optics 89(2), 177 (2007),
http://dx.doi.org/10.1007/s00340-007-2775-7
29. S. Merlet, J.L. Gouét, Q. Bodart, A. Clairon, A. Landra-
gin, F. Pereira Dos Santos, P. Rouchon, Metrologia 46, 87 (2009)
http://dx.doi.org/10.1007/s10686-008-9084-y